875 resultados para modeling of data sources
Resumo:
In this study, the measurement of the concentration and size of particles and the identification of their sources were carried out at five orthopedic surgeries. The aerosol concentration and particle size distribution, ranging from 0.3 mu m 10 mu m, were measured and related to the type of indoor activity. The handling of surgical linen and gowns, handling of the patient, use of electrosurgical apparatus, use of a bone saw, handling of equipment, and cleaning of the room were identified as the most important sources of particles, with each of these activities posing different risks to the health of the patients and workers. The results showed that most of the particles were above 0.5 mu m and that there was a strong correlation among all particles of sizes above 1 mu m. Particles with diameters in the range of 0.3 mu m-0.5 mu m had a good correlation only with particles in the ranges of 0.5 mu m-1.0 mu m and 1.0 mu m-3.0 mu m in three of the surgeries analyzed. Findings led to the conclusion that most of the events responsible for generating aerosol particles in an orthopedic surgery room are brief, intermittent, and highly variable, thus requiring the use of specific instrumentation for their continuous identification and characterization.
Resumo:
Transplantation brings hope for many patients. A multidisciplinary approach on this field aims at creating biologically functional tissues to be used as implants and prostheses. The freeze-drying process allows the fundamental properties of these materials to be preserved, making future manipulation and storage easier. Optimizing a freeze-drying cycle is of great importance since it aims at reducing process costs while increasing product quality of this time-and-energy-consuming process. Mathematical modeling comes as a tool to help a better understanding of the process variables behavior and consequently it helps optimization studies. Freeze-drying microscopy is a technique usually applied to determine critical temperatures of liquid formulations. It has been used in this work to determine the sublimation rates of a biological tissue freeze-drying. The sublimation rates were measured from the speed of the moving interface between the dried and the frozen layer under 21.33, 42.66 and 63.99 Pa. The studied variables were used in a theoretical model to simulate various temperature profiles of the freeze-drying process. Good agreement between the experimental and the simulated results was found.
Resumo:
Background: The CUPID (Cultural and Psychosocial Influences on Disability) study was established to explore the hypothesis that common musculoskeletal disorders (MSDs) and associated disability are importantly influenced by culturally determined health beliefs and expectations. This paper describes the methods of data collection and various characteristics of the study sample. Methods/Principal Findings: A standardised questionnaire covering musculoskeletal symptoms, disability and potential risk factors, was used to collect information from 47 samples of nurses, office workers, and other (mostly manual) workers in 18 countries from six continents. In addition, local investigators provided data on economic aspects of employment for each occupational group. Participation exceeded 80% in 33 of the 47 occupational groups, and after pre-specified exclusions, analysis was based on 12,426 subjects (92 to 1018 per occupational group). As expected, there was high usage of computer keyboards by office workers, while nurses had the highest prevalence of heavy manual lifting in all but one country. There was substantial heterogeneity between occupational groups in economic and psychosocial aspects of work; three-to fivefold variation in awareness of someone outside work with musculoskeletal pain; and more than ten-fold variation in the prevalence of adverse health beliefs about back and arm pain, and in awareness of terms such as "repetitive strain injury" (RSI). Conclusions/Significance: The large differences in psychosocial risk factors (including knowledge and beliefs about MSDs) between occupational groups should allow the study hypothesis to be addressed effectively.
Resumo:
Tuberculosis (TB) is a major infectious disease caused by Mycobacterium tuberculosis (Mtb). According to the World Health Organization (WHO), about 1.8 million people die from TB and 10 million new cases are recorded each year. Recently, a new series of naphthylchalcones has been identified as inhibitors of Mtb protein tyrosine phosphatases (PTPs). In this work, 100 chalcones were designed, synthesized, and investigated for their inhibitory properties against MtbPtps. Structure-activity relationships (SAR) were developed, leading to the discovery of new potent inhibitors with IC50 values in the low-micromolar range. Kinetic studies revealed competitive inhibition and high selectivity toward the Mtb enzymes. Molecular modeling investigations were carried out with the aim of revealing the most relevant structural requirements underlying the binding affinity and selectivity of this series of inhibitors as potential anti-TB drugs.
Resumo:
This paper deals with the numerical analysis of saturated porous media, taking into account the damage phenomena on the solid skeleton. The porous media is taken into poro-elastic framework, in full-saturated condition, based on Biot's Theory. A scalar damage model is assumed for this analysis. An implicit boundary element method (BEM) formulation, based on time-independent fundamental solutions, is developed and implemented to couple the fluid flow and two-dimensional elastostatic problems. The integration over boundary elements is evaluated using a numerical Gauss procedure. A semi-analytical scheme for the case of triangular domain cells is followed to carry out the relevant domain integrals. The non-linear problem is solved by a Newton-Raphson procedure. Numerical examples are presented, in order to validate the implemented formulation and to illustrate its efficacy. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Hundred forty-four Shaver White laying hens were used over a 4 week experimental period to investigate the effect of 3% of soybean oil, corn oil (MIL), canola oil, flaxseed oil (LIN), salmon oil (SAL) or tuna and sardine oil (SR/AT) added to the diets, upon the fatty acid egg yolk composition, blood plasma levels and incorporation time of each fatty acid into the egg yolk. Hens were allocated into 72 cages and the experimental design was a 6 x 6 randomized factorial model. Hens fed 3% of different oils, responded with increased polyunsaturated fatty acids omega 3 (ω-3 PUFAs), except for corn oil. The addition of flaxseed, soybean or corn oil into the diet increased the PUFAs levels into the egg yolk and in the blood plasma. Adding tuna and sardine oil into the diet increased the concentration of yolk saturated fatty acids. The levels of ω-3 PUFAs were increased in the tuna and sardine oil treatment, while the flaxseed oil increased the plasma fatty acids. The deposition of 349.28 mg/yolk of a-linolenic fatty acids (ALA) was higher in the group fed LIN, while the higher equal to 157.13 mg DHA/yolk was observed in group SR/AT. In the plasma, deposition increased from 0.33% (MIL) for 6.29% ALA (LIN), while that of DHA increase of 0.47% (MIL) for 4.24% (SAL) and 4.48% (SR/AT) and of 0.98% (MIL) for 6.14% (SR/AT) and 8.44% (LIN) of ω-3 PUFAs. The percentage of EPA into the yolk and plasma was higher for the hens fed 3% tuna and sardine oil diet, as well as the levels of yolk DHA. The concentration of DHA into the plasma was higher for the salmon and tuna/sardine oil treatments. The PUFAs yolk decreased during the first eight days of experiment, while the ω-3 PUFAs increased during the same period. The concentration of ALA increased until ten days of experiment, while the percentage of EPA and DHA increased up to the eighth experimental day
Resumo:
Two hundred eighty-eight 32-wk-old Hisex White laying hens were used in this research during a 10 weeks period, arranged in a 2 x 5 completely randomized factorial design, with three replicates of eight birds per treatment. Two groups: fish oil (OP) and Marine Algae (AM) with five DHA levels (120, 180, 240, 300 and 360 mg/100 g diet) were assigned including two control groups birds fed corn and soybean basal diet (CON) and a diet supplemented with AM (AM420) to study the effect of time 0, 2, 4, 6 and 8 weeks (wk) on the efficiency of egg yolk fatty acid enrichment. The means varied (p<0.01) of 17.63% (OP360) to 22.08% (AM420) is the total Polyunsaturated Fatty Acids (PUFAs) and 45.8 mg/g (OP360), 40.37 mg/g (OP360, 4 wk) to 65.82 mg/g (AM420) and 68.79 mg/g/yolk (AM120, 8 wk) for n-6 PUFAs. On the influence of sources and levels in the times, the means of n-3 PUFAs increased by 5.58 mg/g (AM120, 2 wk) to 14.16 mg/g (OP360, 6 wk) when compared to average of 3.34 mg PUFAs Ω/g/yolk (CON). Usually, the means DHA also increased from 22.34 (CON) to 176.53 mg (μ, OP360), 187.91 mg (OP360, 8 wk) and 192.96 mg (OP360, 6 wk) and 134.18 mg (μ, OP360), 135.79 mg (AM420, 6 wk), 149.75 mg DHA (AM420, 8 wk) per yolk. The opposite was observed for the means AA, so the effect of the sources, levels and times, decreased (P <0.01) of 99.83 mg (CON) to 31.99 mg (OP360, 4 wk), 40.43 mg (μ, OP360) to 61.21 mg (AM420) and 71.51 mg AA / yolk (μ, AM420). Variations of the average weight of 15.75g (OP360) to 17.08g (AM420) yolks of eggs de 32.55% (AM420) to 34.08% (OP360) of total lipids and 5.28 g (AM240) to 5.84 g (AM120) of fat in the yolk were not affected (p>0.05) by treatments, sources, levels and times studied. Starting of 2 week, the hens increased the level of n-3 PUFAs in the egg yolks, being expressively increased (p<0.01) until 4 weeks, which after the increased levels of n-3 PUFAs tended to if stabilize around of time of 8 experimental weeks, when it was more effective saturation of the tissues and yolk.
Resumo:
Slope failure occurs in many areas throughout the world and it becomes an important problem when it interferes with human activity, in which disasters provoke loss of life and property damage. In this research we investigate the slope failure through the centrifuge modeling, where a reduced-scale model, N times smaller than the full-scale (prototype), is used whereas the acceleration is increased by N times (compared with the gravity acceleration) to preserve the stress and the strain behavior. The aims of this research “Centrifuge modeling of sandy slopes” are in extreme synthesis: 1) test the reliability of the centrifuge modeling as a tool to investigate the behavior of a sandy slope failure; 2) understand how the failure mechanism is affected by changing the slope angle and obtain useful information for the design. In order to achieve this scope we arranged the work as follows: Chapter one: centrifuge modeling of slope failure. In this chapter we provide a general view about the context in which we are working on. Basically we explain what is a slope failure, how it happens and which are the tools available to investigate this phenomenon. Afterwards we introduce the technology used to study this topic, that is the geotechnical centrifuge. Chapter two: testing apparatus. In the first section of this chapter we describe all the procedures and facilities used to perform a test in the centrifuge. Then we explain the characteristics of the soil (Nevada sand), like the dry unit weight, water content, relative density, and its strength parameters (c,φ), which have been calculated in laboratory through the triaxial test. Chapter three: centrifuge tests. In this part of the document are presented all the results from the tests done in centrifuge. When we talk about results we refer to the acceleration at failure for each model tested and its failure surface. In our case study we tested models with the same soil and geometric characteristics but different angles. The angles tested in this research were: 60°, 75° and 90°. Chapter four: slope stability analysis. We introduce the features and the concept of the software: ReSSA (2.0). This software allows us to calculate the theoretical failure surfaces of the prototypes. Then we show in this section the comparisons between the experimental failure surfaces of the prototype, traced in the laboratory, and the one calculated by the software. Chapter five: conclusion. The conclusion of the research presents the results obtained in relation to the two main aims, mentioned above.
Resumo:
[EN]Isobaric vapor–liquid equilibria at p = 101.32 kPa (iso-p VLE) and the mixing properties, hE and vE, are determined for a set of twelve binary solutions: HCOOCuH2u+1(1)+CnH2n+2(2) with u = (1–4) and n = (7– 9). The (iso-p VLE) present deviations from the ideal behavior, which augment as u diminishes and n increases. Systems with [u = 2,3 n = 7] and [u =4 , n = 7,8] present a minimum-boiling azeotrope. The nonideality is also reflected in high endothermic values, hE > 0, and expansive effects, vE > 0, for all the binaries, which increase regularly with n
Resumo:
For many years, RF and analog integrated circuits have been mainly developed using bipolar and compound semiconductor technologies due to their better performance. In the last years, the advance made in CMOS technology allowed analog and RF circuits to be built with such a technology, but the use of CMOS technology in RF application instead of bipolar technology has brought more issues in terms of noise. The noise cannot be completely eliminated and will therefore ultimately limit the accuracy of measurements and set a lower limit on how small signals can be detected and processed in an electronic circuit. One kind of noise which affects MOS transistors much more than bipolar ones is the low-frequency noise. In MOSFETs, low-frequency noise is mainly of two kinds: flicker or 1/f noise and random telegraph signal noise (RTS). The objective of this thesis is to characterize and to model the low-frequency noise by studying RTS and flicker noise under both constant and switched bias conditions. The effect of different biasing schemes on both RTS and flicker noise in time and frequency domain has been investigated.
Resumo:
The object of the present study is the process of gas transport in nano-sized materials, i.e. systems having structural elements of the order of nanometers. The aim of this work is to advance the understanding of the gas transport mechanism in such materials, for which traditional models are not often suitable, by providing a correct interpretation of the relationship between diffusive phenomena and structural features. This result would allow the development new materials with permeation properties tailored on the specific application, especially in packaging systems. The methods used to achieve this goal were a detailed experimental characterization and different simulation methods. The experimental campaign regarded the determination of oxygen permeability and diffusivity in different sets of organic-inorganic hybrid coatings prepared via sol-gel technique. The polymeric samples coated with these hybrid layers experienced a remarkable enhancement of the barrier properties, which was explained by the strong interconnection at the nano-scale between the organic moiety and silica domains. An analogous characterization was performed on microfibrillated cellulose films, which presented remarkable barrier effect toward oxygen when it is dry, while in the presence of water the performance significantly drops. The very low value of water diffusivity at low activities is also an interesting characteristic which deals with its structural properties. Two different approaches of simulation were then considered: the diffusion of oxygen through polymer-layered silicates was modeled on a continuum scale with a CFD software, while the properties of n-alkanthiolate self assembled monolayers on gold were analyzed from a molecular point of view by means of a molecular dynamics algorithm. Modeling transport properties in layered nanocomposites, resulting from the ordered dispersion of impermeable flakes in a 2-D matrix, allowed the calculation of the enhancement of barrier effect in relation with platelets structural parameters leading to derive a new expression. On this basis, randomly distributed systems were simulated and the results were analyzed to evaluate the different contributions to the overall effect. The study of more realistic three-dimensional geometries revealed a prefect correspondence with the 2-D approximation. A completely different approach was applied to simulate the effect of temperature on the oxygen transport through self assembled monolayers; the structural information obtained from equilibrium MD simulations showed that raising the temperature, makes the monolayer less ordered and consequently less crystalline. This disorder produces a decrease in the barrier free energy and it lowers the overall resistance to oxygen diffusion, making the monolayer more permeable to small molecules.
Resumo:
The objective of this dissertation is to develop and test a predictive model for the passive kinematics of human joints based on the energy minimization principle. To pursue this goal, the tibio-talar joint is chosen as a reference joint, for the reduced number of bones involved and its simplicity, if compared with other sinovial joints such as the knee or the wrist. Starting from the knowledge of the articular surface shapes, the spatial trajectory of passive motion is obtained as the envelop of joint configurations that maximize the surfaces congruence. An increase in joint congruence corresponds to an improved capability of distributing an applied load, allowing the joint to attain a better strength with less material. Thus, joint congruence maximization is a simple geometric way to capture the idea of joint energy minimization. The results obtained are validated against in vitro measured trajectories. Preliminary comparison provide strong support for the predictions of the theoretical model.