863 resultados para melonate salts
Resumo:
This paper explores how the surface permeability of sandstone blocks changes over time in response to repeated salt weathering cycles. Surface permeability controls the amount of moisture and dissolved salt that can penetrate in and facilitate decay. Connected pores permit the movement of moisture (and hence soluble salts) into the stone interior, and where areas are more or less permeable soluble salts may migrate along preferred pathways at differential rates. Previous research has shown that salts can accumulate in the near-surface zone and lead to partial pore blocking which influences subsequent moisture ingress and causes rapid salt accumulation in the near-surface zone.
Two parallel salt weathering simulations were carried out on blocks of Peakmoor Sandstone of different volumes. Blocks were removed from simulations after 2, 5, 10, 20 and 60 cycles. Permeability measurements were taken for these blocks at a resolution of 20 mm, providing a grid of 100 permeability values for each surface. The geostatistical technique of ordinary kriging was applied to the data to produce a smoothed interpolation of permeability for these surfaces, and hence improve understanding of the evolution of permeability over time in response to repeated salt weathering cycles.
Results illustrate the different responses of the sandstone blocks of different volumes to repeated salt weathering cycles. In both cases, after an initial subtle decline in the permeability (reflecting pore blocking), the permeability starts to increase — reflected in a rise in mean, maximum and minimum values. However, between 10 and 20 cycles, there is a jump in the mean and range permeability of the group A block surfaces coinciding with the onset of meaningful debris release. After 60 cycles, the range of permeability in the group A block surface had increased markedly, suggesting the development of a secondary permeability. The concept of dynamic instability and divergent behaviour is applied at the scale of a single block surface, with initial small-scale differences across a surface having larger scale consequences as weathering progresses.
After cycle 10, group B blocks show a much smaller increase in mean permeability, and the range stays relatively steady — this may be explained by the capillary conditions set up by the smaller volume of the stone, allowing salts to migrate to the ‘back’ of the blocks and effectively relieving stress at the ‘front’ face.
Resumo:
The problem of the long-term impact of historical fire on masonry is not clearly understood. Much research focuses on the damage that is caused by fire in isolation, and omits to investigate the subsequent exploitation of weaknesses inherited from fire events. Fire can, for example, cause significant physical, chemical and mineralogical change to sandstone, which may then be exploited by background environmental factors such as salt and freeze–thaw weathering. To explore this experimentally, blocks of Peakmoor Sandstone were subjected to a real fire (as well as lime rendering/removal and frost cycle pre-treatments), and their subsequent response to salt weathering cycles was monitored by weight loss and visual assessment of the pattern of surface damage. Results illustrate that the post-fire deterioration of sandstone is strongly conditioned by fracture networks and soot cover inherited from the fire. The exploitation of fractures can lead to spalling during salt weathering cycles — this takes place as granular dissagregation steadily widens cracks and salts concentrate and crystallise in areas of inherited weakness. Soot cover can have a profound effect on subsequent performance. It reduces surface permeability and can be hydrophobic in character, limiting salt ingress and suppressing decay in the short term. However, as salt crystals concentrate under the soot crust, detachment of this layer can occur, exposing fire-damaged stone beneath. Understanding the subsequent exploitation of stone exposed to fire damage by background environmental factors (for example, salt weathering/ temperature cycling) is key to the post-fire management of stone decay.
Resumo:
Following automation of lighthouses around the coastline of Ireland, reports of accelerated deterioration of interior granite stonework have increased significantly with an associated deterioration in the historic structure and rise in related maintenance costs. Decay of granite stone- work primarily occurs through granular disintegration with the effective grusification of granite surfaces. A decay gradient exists within the towers whereby the condition of granite in the lower levels is much worse than elsewhere. The lower tower levels are also regions with highest rela- tive humidity values and greatest salt concentrations. Data indicate that post-automation decay may have been trig- gered by a change in micro-environmental conditions within the towers associated with increased episodes of condensation on stone surfaces. This in turn appears to have facilitated deposition and accumulation of hygro- scopic salts (e.g. NaCl) giving rise to widespread evidence of deliquescence in the lower tower levels. Evidence indicates that the main factors contributing to accelerated deterioration of interior granite stonework are changes in micro-environmental conditions, salt weathering, chemical weathering through the corrosive effect of strongly alkaline conditions on alumino-silicate minerals within the granite and finally, the mica-rich characteristics of the granite itself which increases its structural and chemical susceptibility to subaerial weathering processes by creating points of weakness within the granite. This case study demonstrates how seemingly minor changes in micro-environmental conditions can unintentionally trigger the rapid and extensive deterioration of a previously stable rock type and threaten the long-term future of nationally iconic opera- tional historic structures.
Resumo:
The combination of different boron cluster anions and some of the cations typically found in the composition of ionic liquids has been possible by straightforward metathetic reactions, producing new low melting point salts; the imidazolium cations have been systematically studied, [C(n)mim](+) (when [C(n)mim](+) = 1-alkyl-3-methylimidazolium; n = 2, 4, 6, 8, 10, 12, 14, 16, or 18). Melting points increase in the anionic order [Co(C2B9H11)(2)](-) =-34 degrees C). The salts [C(n)mim](2)[X] ([X](2-) = [B10Cl10](2-) or [B12Cl12](2-), n = 16 or 18) show liquid crystal phases between the solid and liquid states. Tetraalkylphosphonium salts of [B10Cl10](2-) have also been prepared. Physical properties, such as thermal stability, density, or viscosity, have been measured for some selected samples. The presence of the perhalogenated dianion [B12Cl12](2-) in the composition of the imidazolium salts renders highly thermally stable compounds. For example, [C(2)mim](2)[B12Cl12] starts to decompose above 480 degrees C in a dynamic TGA analysis under a dinitrogen atmosphere. Crystal structures of [C(2)mim][Co(C2B9H11)(2)] and [C(2)mim](2)[B12Cl12] have been determined. H-1 NMR spectra of selected imidazolium-boron cluster anion salts have been recorded from solutions as a function of the concentration, showing trends related to the cation-anion interactions.
Resumo:
Ta2O5-SiO2 catalysts were prepared by a sol-gel method using tetraethyl orthosilicate (TEOS) and tantalum (V) ethoxide as the sources of silicon and tantalum, and two families of quaternary ammonium salts, [CnH(2n+1)(CH3)(3)N]Br (n = 14, 16, 18) and [(CnH(2n+1))(4)N]Br (n = 10, 12, 16, 18) as surfactants. The catalysts were compared for the selective suffoxidation of 4,6-dimethyl-2-thiomethylpyrimidine using peroxide as an oxidising agent in a range of ionic liquids and organic solvents. The sol-gel catalysts were also compared with tantalum on MCM-41 prepared by grafting. The catalysts were characterized from adsorption-desorption isotherms of N-2, XRD patterns, small-angle X-ray scattering, IR spectra from adsorbed pyridine and CDCl3, XPS spectra, and Si-29 magic angle spinning (MAS) NNIR experiments. The effect of recycling on the catalyst leaching and selectivity/activity was also studied. High activities and selectivities were found in [NTf2](-) based ionic liquids and organic solvents with good recyclability of the catalyst. Tantalum was found in the solution after reaction; however, this was determined to be due to entrapment of catalyst particulates, as opposed to leaching of the active metal. (c) 2005 Elsevier Inc. All rights reserved.
Resumo:
In constant, search for micro/mesoporous materials, gallium phosphates, have attracted continued interest due to the large pore size reported for some of these solids in comparison with analogous aluminum phosphates. However up to now, the porosity of gallium phosphates collapsed upon template removal or exposure to the ambient moisture. In the present work, we describe high-surface thermally stable mesoporous gallium phosphates synthesized from gallium propoxide and PCl3 and different templating agents such as amines (dipropylamine, piperidine and aminopiperidine) and quaternary ammonium salts (C16H33(CH3)3NBr and C16PyCl). These highly reactive precursors have so far not been used as gallium and phosphate sources for the synthesis of gallophosphates. Conceptually, our present synthetic procedure is based on the fast formation of gallium phosphate nanoparticles via the reaction of gallium propoxide with PCl3 and subsequent construction of the porous material with nanoparticles as building blocks. The organization of the gallophosphate nanoparticles in stable porous structures is effected by the templates. Different experimental procedures varying the molar composition of the sol-gel, pH and the pretreatment of gallium precursor were assayed, most of them leading to satisfactory materials in terms of thermal stability and porosity. In this way, a series of gallium phosphates with surface are above 200 m(2) g(-1), and narrow pore size from 3 to 6 nm and remarkable thermal stability (up to 550 degrees C) have been prepared. In some cases, the structure tends to show some periodicity and regularity as determined by XRD. The remarkable stability has allowed us to test the catalytic activity of gallophosphates for the aerobic oxidation of alkylaromatics with notable good results. Our report reopens the interest for gallophosphates in heterogeneous catalysis. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
Pt-ceria catalysts present different surface chemistries depending on the preparation method and the pretreatment. The catalytic behavior of Pt/CeO2 catalysts in the hydrodechlorination of trichloroethylene (TCE) to ethylene was examined as a function of the pretreatment conditions and the noble metal precursor salts. Using FTIR and X-ray photoelectron spectroscopy, significant differences were observed in the surface properties of Pt/CeO2 prepared from the H2PtCl6 precursor after different pretreatment procedures (i.e.. reduction or oxidation-reduction). These surface changes are related to chloride residues from the synthesis. Strong changes were observed in the selectivity of the catalysts to ethylene depending on the pretreatment conditions. The 0.5%Pt/CeO2 catalyst showed a 13% selectivity toward ethylene after reduction, whereas alter oxidation, followed by reduction, the selectivity increased up to 85% at the same conversion level. This effect was only observed when a chloride-containing precursor was used in the preparation. In this way, it is demonstrated that the use of a Cl-containing Pt precursor and an air treatment prior to reduction strongly improves the ethylene selectivity of Pt-CeO2 dechlorination catalysts. This can be explained by formation or a CeOCl phase during the synthesis that decomposes upon air tempering, producing oxygen vacancies on the ceria support. We propose that these oxygen vacancies are active for cleaving off Cl from the TCE. Pt then supplies II to clean-off Cl as HCl. Reaction of TCE on Pt produces rather ethane, so Pt may be partly Cl-poisoned for the hydrodechlorination reaction but not for II, dissociation or CO adsorption.
Resumo:
Using a ball mill, rapid, atom-economic coupling between adenosine-5'-phosphoromorpholidate and phosphorylated ribose derivatives as their sodium or barium salts was achieved. Facile purification by reversed-phase HPLC enabled product isolation within hours.
Resumo:
Silver salts and triphosphine ligands with biphenyl substituents assemble to give coordination cages with four external aromatic channel receptors in a pseudo-tetrahedral arrangement.
Resumo:
Two series of 1-alkylpyridinium and N-alkyl-N-methylpiperidinium ionic liquids fiinctionalized with a nitrile group at the end of the alkyl chain have been synthesized. Structural modifications include a change of the alkyl spacer length between the nitrile group and the heterocycle of the cationic core, as well as adding methyl or ethyl substituents on different positions of the pyridinium ring. The anions are the bromide and the bis(trifluoromethylsulfonyl)imide ion. All the bis(trifluoromethylsulfonyl)imide salts as well as the bromide salts with a long alkyl spacer were obtained as viscous liquids at room temperature, but some turned out to be supercooled liquids. In addition, pyrrolidinium and piperidinium ionic liquids with two nitrile functions attached to the heterocyclic core have been prepared. The crystal structures of seven pyridinium bis(trifluoromethylsulfonyl)imide salts are reported. Quantum chemical calculations have been performed on model cations and ion pairs with the bis(trifluoromethylsulfonyl)imide anion. A continuum model has been used to take solvation effects into account. These calculations show that the natural partial charge on the nitrogen atom of the nitrile group becomes more negative when the length of the alkyl spacer between the nitrile functional group and the heterocyclic core of the cation is increased. Methyl or methoxy substituents on the pyridinium ring slightly increase the negative charge on the nitrile nitrogen atom due to their electron-donating abilities. The position of the substituent (ortho, meta, or para) has only a very minor effect on the charge of the nitrogen atom. The N-15 NMR spectra of the bis(trifluoromethylsulfonyl)imide ionic liquids were recorded with the nitrogen-15 nucleus at its natural abundance. The chemical shift of the N-15 nucleus of the nitrile nitrogen atom could be correlated with the calculated negative partial charge on the nitrogen atom.
Resumo:
Heavy metals, primarily zinc, copper, lead, and chromium, and Polycyclic Aromatic Hydrocarbons (PAHs) are the main hazardous constituents of road runoff. The main sources of these contaminants are vehicle emission, mostly through wear and leakage, although erosion of the road surface and de-icing salts are also recognised pollution sources. The bioavailability of these toxic compounds, and more importantly their potential biomagnification along food chains, could affect aquatic communities persistently exposed to road runoff. Several internationally approved abatement technologies are available for the management of road runoff on new motorway schemes. Recent studies conducted in Cork and Dublin, Ireland demonstrated the efficacy of infiltration trenches as abatement technologies in the removal of both heavy metals and PAHs prior to discharge; the technology was however inefficient in mitigating first flush events. Gully traps with sedimentation chambers, another technology investigated, demonstrated to have a substantially lower removal potential but appeared to be more effective in attenuating surges of contaminants attributed to first flush events. Consequently the employment of combined abatement techniques could efficiently minimise deviations from required effluent concentrations. The studies determined a relatively stationary accumulation of heavy metals and PAHs in sediments close to the point of discharge with a rapid decline in concentration in nearby downstream sediments (<50m). Further, Microtox® Solid Phase testing reported a negligible impact on assemblages exposed to contaminated sediments for all sites investigated. This paper describes pollutant loading from road runoff and mitigation measures from a freshwater deterioration in a water quality perspective. The results and analysis of field samples collected adjacent to a number of roads and motorways in Ireland is also presented. Finally sustainable drainage systems, abatement techniques and technologies available for onsite treatment of runoff are presented to improve and mitigate impacts of vehicular transport on the environment.
Resumo:
2-Phosphanylethylcyclopentadienyl lithium compounds, Li[C5R'(4)(CH2)(2)PR2] (R = Et, R' = H or Me, R = Ph, R' = Me), have been prepared from the reaction of spirohydrocarbons C5R'(4)(C2H4) with LiPR2. C5Et4HSiMe2CH2PMe2, was prepared from reaction of Li[C5Et4] with Me2SiCl2 followed by Me2PCH2Li. The lithium salts were reacted with [RhCl(CO)2]2,[IrCl(CO)3] or [Co-2(CO)(8)] to give [M(C5R'(4)(CH2) 2PR2)(CO)] (M = Rh, R = Et, R' = H or Me, R= Ph, R' = Me; M = Ir or Co, R = Et, R' = Me), which have been fully characterised, in many cases crystallographically as monomers with coordination of the phosphorus atom and the cyclopentadienyl ring. The values of nu(CO) for these complexes are usually lower than those for the analogous complexes without the bridge between the cyclopentadienyl ring and the phosphine, the exception being [Rh(Cp'(CH2)(2)PEt2)(CO)] (Cp' = C5Me4), the most electron rich of the complexes. [Rh(C5Et4SiMe2CH2PMe2)(CO)] may be a dimer. [Co-2(CO)(8)] reacts with C5H5(CH2)(2)PEt2 or C5Et4HSiMe2CH2PMe2 (L) to give binuclear complexes of the form [Co-2(CO)(6)L-2] with almost linear PCoCoP skeletons. [Rh(Cp'(CH2)(2)PEt2)(CO)] and [Rh(Cp'(CH2)(2)PPh2)(CO)] are active for methanol carbonylation at 150 degrees C and 27 bar CO, with the rate using [Rh(Cp'(CH2)(2)PPh2)(CO)] (0.81 mol dm(-3) h(-1)) being higher than that for [RhI2(CO)(2)](-) (0.64 mol dm(-3) h(-1)). The most electron rich complex, [Rh(Cp'(CH2)(2)PEt2)(CO)] (0.38 mol dm(-3) h(-1)) gave a comparable rate to [Cp*Rh(PEt3)(CO)] (0.30 mol dm(-3) h(-1)), which was unstable towards oxidation of the phosphine. [Rh(Cp'(CH2)(2)PEt2)I-2], which is inactive for methanol carbonylation, was isolated after the methanol carbonylation reaction using [Rh(Cp'(CH2)(2)PEt2)(CO)].
Resumo:
For a better understanding of the adsorption behavior of alkylcarbonate-based electrolytes on graphite electrodes and Celgard separator for Li-ion batteries applications, the interface parameters are determined by contact angle and surface tension measurements. The correlation between these parameters and chemical compositions made of alkyl carbonate with a varying nature of lithium salts (LiPF6 and LiTFSI) and volume fractions of binary and ternary mixtures containing propylene carbonate (PC), ethylene carbonate (EC), and dimethyl carbonate (DMC) is investigated. From the obtained contact angle and surface tension (?L) values for each liquid, the dispersive and polar components of the surface tension (?Ld and ?Lp) of the electrolyte and interfacial free energy between the solid and liquid (?SL) were then calculated using the Young’s equation. The variation of contact angle (?) and the surface tension, as well as the work of adhesion (WA) of binary PC/DMC mixtures on PP, PE, and PET model surfaces were also measured and commented as function of volume fraction of PC in DMC. Finally, the Zisman’s critical surface tension (?C) for studied surfaces was then obtained showing positives slopes of cos ? versus ?L. This behavior is explained by a relative higher adsorption of alkylcarbonates to the hydrogenated supports or graphite. These results are decisive to understand the performance of electrolyte/electrode material/separator interfaces in lithium-ion battery devices.
Resumo:
The anionic speciation of chlorostannate(II) ionic liquids, prepared by mixing 1-alkyl-3-methylimidazolium chloride and tin(II) chloride in various molar ratios, chi(SnCl2), was investigated in both solid and liquid states. The room temperature ionic liquids were investigated by Sn-119 NMR spectroscopy, X-ray photoelectron spectroscopy, and viscometry. Crystalline samples were studied using Raman spectroscopy, single-crystal X-ray crystallography, and differential scanning calorimetry. Both liquid and solid systems (crystallized from the melt) contained [SnCl3](-) in equilibrium with Cl- when chi(SnCl2) < 0.50, [SnCl3](-) in equilibrium with [Sn2Cl5](-) when chi(SnCl2) > 0.50, and only [SnCl3](-) when chi(SnCl2) = 0.50. Tin(II) chloride was found to precipitate when chi(SnCl2) > 0.63. No evidence was detected for the existence of [SnCl4](-) across the entire range of chi(SnCl2) although such anions have been reported in the literature for chlorostannate(II) organic salts crystallized from organic solvents. Furthermore, the Lewis acidity of the chlorostannate(II)-based systems, expressed by their Gutmann acceptor number, has been determined as a function of the composition, chi(SnCl2), to reveal Lewis acidity for chi(SnCl2) > 0.50 samples comparable to the analogous systems based on zinc(II). A change of the Lewis basicity of the anion was estimated using H-1 NMR spectroscopy, by comparison of the measured chemical shifts of the C-2 hydrogen in the imidazolium ring. Finally, compositions containing free chloride anions (chi(SnCl2) < 0.50) were found to oxidize slowly in air to form a chlorostannate(IV) ionic liquid containing the [SnCl6](2-) anion.