995 resultados para lymphatic vessel
Resumo:
Projecte de recerca elaborat a partir d’una estada al Laboratory of Archaeometry del National Centre of Scientific Research “Demokritos” d’Atenes, Grècia, entre juny i setembre 2006. Aquest estudi s’emmarca dins d’un context més ampli d’estudi del canvi tecnològic que es documenta en la producció d’àmfores de tipologia romana durant els segles I aC i I dC en els territoris costaners de Catalunya. Una part d’aquest estudi contempla el càlcul de les propietats mecàniques d’aquestes àmfores i la seva avaluació en funció de la tipologia amforal, a partir de l’Anàlisi d’Elements Finits (AEF). L’AEF és una aproximació numèrica que té el seu origen en les ciències d’enginyeria i que ha estat emprada per estimar el comportament mecànic d’un model en termes, per exemple, de deformació i estrès. Així, un objecte, o millor dit el seu model, es dividit en sub-dominis anomenats elements finits, als quals se’ls atribueixen les propietats mecàniques del material en estudi. Aquests elements finits estan connectats formant una xarxa amb constriccions que pot ser definida. En el cas d’aplicar una força determinada a un model, el comportament de l’objecte pot ser estimat mitjançant el conjunt d’equacions lineals que defineixen el rendiment dels elements finits, proporcionant una bona aproximació per a la descripció de la deformació estructural. Així, aquesta simulació per ordinador suposa una important eina per entendre la funcionalitat de ceràmiques arqueològiques. Aquest procediment representa un model quantitatiu per predir el trencament de l’objecte ceràmic quan aquest és sotmès a diferents condicions de pressió. Aquest model ha estat aplicat a diferents tipologies amforals. Els resultats preliminars mostren diferències significatives entre la tipologia pre-romana i les tipologies romanes, així com entre els mateixos dissenys amforals romans, d’importants implicacions arqueològiques.
Resumo:
Summary The best described physiological function of low-density lipoproteins (LDL) is to transport cholesterol to target tissues. LDL deliver their cholesterol cargo to cells following their interaction with the LDL receptor. LDL, when their vascular concentrations increase, have also been implicated in pathologies such as atherosclerosis. Among the cell types that are found in blood vessels, endothelial and smooth muscle cells have dominated cellular research on atherosclerotic mechanisms and LDL activation of signaling pathways, while very little is known about adventitial fibroblast activation caused by elevated lipoprotein levels. Since fibroblasts participate in wound repair and since it has recently been recognized that fibroblasts may play pivotal roles in vascular remodeling and repair of injury, we assessed whether lipoproteins affect fibroblast function. We have found that LDL specifically mediate the activation of a class of mitogen-activated protein kinases (MAPKs): the p38 MAPKs. The activation of this pathway in turn modulates cell shape by promoting lamellipodia formation and extensive cell spreading. This is of particular interest because it provides a mechanism by which LDL can promote wound healing or vessel wall remodeling as observed during the development of atherosclerosis. In order to understand the molecular mechanisms by which LDL induce p38 activation we searched for the component in the LDL particle responsible for the induction of this pathway. We found that cholesterol is the major component of lipoprotein particles that mediates their ability to stimulate the p38 MAPK pathway. Furthermore, we investigated the cellular mechanisms underlying the ability of LDL to induce cell shape changes and whether this could participate in wound repair. Our recent data demonstrates that the capacity of LDL to induce fibroblast spreading relies on their ability to stimulate IL-8 secretion, which in turn leads to accelerated wound healing. LDL-induced IL-8 production and subsequent wound closure are impaired upon inhibition of the p38 MAPK pathway indicating that the LDL-induced spreading and accelerated wound sealing rely on the ability of LDL to stimulate IL-8 secretion in a p38 MAPK-dependent manner. Therefore, regulation of fibroblast shape and migration by lipoproteins may be relevant to atherosclerosis that is characterized by increased LDL-cholesterol levels, IL-8 production and extensive remodeling of the vessel wall. Résumé: La fonction physiologique des lipoprotéines à faible densité (LDL) la mieux décrite est celle du transport du cholestérol aux tissus cibles. Les LDL livrent leur cargaison de cholestérol aux cellules après leur interaction avec le récepteur au LDL. Une concentration vasculaire des LDL augmenté est également impliquée dans le développement de l'athérosclérose. Parmi les types de cellule présents dans les vaisseaux sanguins, les cellules endothéliales et les cellules du muscle lisse ont dominé la recherche cellulaire sur les mécanismes athérosclérotiques et sur l'activation par les LDL des voies de signalisation intracellulaire. A l'inverse peu de choses sont connues sur l'activation des fibroblastes de l'adventice par les lipoprotéines. Puisqu'il a été récemment reconnu que les fibroblastes peuvent jouer un rôle central dans la remodélisation vasculaire et la réparation tissulaire, nous avons étudié si les lipoprotéines affectent la fonction des fibroblastes. Nous avons constaté que les LDL activent spécifiquement une classe de protéines kinases: les p38 MAPK (mitogen-activated protein kinases). L'activation de cette voie module à son tour la forme de la cellule en favorisant la formation de lamellipodes et l'agrandissement des cellules. Cela a un intérêt particulier car il fournit un mécanisme par lequel les LDL peuvent promouvoir la cicatrisation ou la remodélisation des parois vasculaires comme observés lors du développement de l'athérosclérose. Pour comprendre les mécanismes moléculaires par lesquels les LDL provoquent l'activation des p38 MAPK, nous avons cherché à identifier les composants dans la particule de LDL responsables de l'induction de cette voie. Nous avons constaté que le cholestérol est l'élément principal des particules de lipoprotéine qui contrôle leur capacité à stimuler la voie des p38 MAPK. En outre, nous avons examiné les mécanismes cellulaires responsables de la capacité des LDL à induire des changements dans la forme des cellules. Nos données récentes démontrent que la capacité des LDL à induire l'agrandissement des cellules, ainsi que leur aptitude à favoriser la cicatrisation, reposant sur leur capacité à stimuler la sécrétiond'IL-8. La production d'IL-8 induite par les LDL est bloquée par l'inhibition de la voie p38 MAPK, ce qui indique que l'étalement des cellules induit par les LDL ainsi que l'accélération de la cicatrisation sont liés à la capacité des LDL à stimuler la sécrétion d'IL8 via l'activation des p38 MAPK. La régulation de la forme et de la migration des fibroblastes par les lipoprotéines peuvent donc participer au développement de l'athérosclérose qui est caractérisée par l'augmentation des niveaux de production de LDL-cholestérol et d'IL-8 ainsi que par une remodélisation augmentée de la paroi du vaisseau.
Resumo:
INTRODUCTION: Solid tumors are known to have an abnormal vasculature that limits the distribution of chemotherapy. We have recently shown that tumor vessel modulation by low-dose photodynamic therapy (L-PDT) could improve the uptake of macromolecular chemotherapeutic agents such as liposomal doxorubicin (Liporubicin) administered subsequently. However, how this occurs is unknown. Convection, the main mechanism for drug transport between the intravascular and extravascular spaces, is mostly related to interstitial fluid pressure (IFP) and tumor blood flow (TBF). Here, we determined the changes of tumor and surrounding lung IFP and TBF before, during, and after vascular L-PDT. We also evaluated the effect of these changes on the distribution of Liporubicin administered intravenously (IV) in a lung sarcoma metastasis model. MATERIALS AND METHODS: A syngeneic methylcholanthrene-induced sarcoma cell line was implanted subpleurally in the lung of Fischer rats. Tumor/surrounding lung IFP and TBF changes induced by L-PDT were determined using the wick-in-needle technique and laser Doppler flowmetry, respectively. The spatial distribution of Liporubicin in tumor and lung tissues following IV drug administration was then assessed in L-PDT-pretreated animals and controls (no L-PDT) by epifluorescence microscopy. RESULTS: L-PDT significantly decreased tumor but not lung IFP compared to controls (no L-PDT) without affecting TBF. These conditions were associated with a significant improvement in Liporubicin distribution in tumor tissues compared to controls (P < .05). DISCUSSION: L-PDT specifically enhanced convection in blood vessels of tumor but not of normal lung tissue, which was associated with a significant improvement of Liporubicin distribution in tumors compared to controls.
Resumo:
OBJECTIVE: Contemporary free-breathing non contrast enhanced cardiovascular magnetic resonance angiography (CMRA) was qualitatively and quantitatively evaluated to ascertain the reproducibility of the method for coronary artery luminal dimension measurements. SUBJECTS AND METHODS: Twenty-two healthy volunteers (mean age 32 +/- 7 years, 12 males) without coronary artery disease were imaged at 2 centers (1 each in Europe and North America) using navigator-gated and corrected SSFP CMRA on a commercial whole body 1.5T System. Repeat images of right (RCA, n = 21), left anterior descending (LAD, n = 14) and left circumflex (LCX, n = 14) coronary arteries were obtained in separate sessions using identical scan protocol and imaging parameters. True visible vessel length, signal-to-noise (SNR), contrast-to-noise ratios (CNR) and the average luminal diameter over the first 4 cm of the vessel were measured. Intra-observer, inter-observer and inter-scan reproducibility of coronary artery luminal diameter were determined using Pearson's correlation, Bland-Altman analysis and intraclass correlation coefficients (ICC). RESULTS: CNR, SNR and the mean length of the RCA, LAD and LCX imaged for original and repeat scans were not significantly different (all p > 0.30). There was a high degree of intra-observer, inter-observer and inter-scan agreements for RCA, LAD and LCX luminal diameter respectively on Bland-Altman and ICC analysis (ICC's for RCA: 0.98. 0.98 and 0.86; LAD: 0.89, 0.89 and 0.63; LCX: 0.95, 0.94 and 0.79). CONCLUSION: In a 2-center study, we demonstrate that free-breathing 3D SSFP CMRA can visualize long continuous segments of coronary vessels with highly reproducible measurements of luminal diameter.
Resumo:
Abstract Part I : Background : Isolated lung perfusion (ILP) was designed for the treatment of loco-regional malignancies of the lung. In contrast to intravenous (IV) drug application, ILP allows for a selective administration of cytostatic agents such as doxorubicin to the lung while sparing non-affected tissues. However, the clinical results with ILP were disappointing. Doxorubicinbased ILP on sarcoma rodent lungs suggested high overall doxorubicin concentrations within the perfused lung but a poor penetration of the cytostatic agent into tumors. The same holds true for liposomal-encapsulated macromolecular doxorubicin (LiporubicinTM) In specific conditions, low-dose photodynamic therapy (PDT) can enhance the distribution of macromolecules across the endothelial bamer in solid tumors. It was recently postulated that tumor neovessels were more responsive to PDT than the normal vasculature. We therefore hypothesized that Visudyne®-mediated PDT could selectively increase liposomal doxorubicin (LiporubicinTM) uptake in sarcoma tumors to rodent lungs during intravenous (IV) drug administration and isolated lung perfusion (ILP). Material and Methods : A sarcoma tumor was generated in the left lung of Fisher rats by subpleural injection of a sarcoma cell ,suspension via thoracotomy. Ten days later, LiporubicinTM is administered IV or by single pass antegrade ILP, with or without Visudyne® -mediated low-dose PDT pre-treatment of the sarcoma bearing lung. The drug concentration and distribution were assessed separately in tumors and lung tissues by high pressure liquid chromatography (HPLC) and fluorescence microscopy (FNI~, respectively. Results : PDT pretreatment before IV LiporubicinTM administration resulted in a significantly higher tumor drug uptake and tumor to lung drug ratio compared to IV drug injection alone without affecting the blood flow and drug distribution in the lung. PDT pre-treatment before LiporubicinTM-based ILP also resulted in a higher tumor drug uptake and a higher tumor to lung drug ratio compared to ILP alone, however, these differences were not significant due to a heterogeneous blood flow drug distribution during ILP which was further accentuated by PDT. Conclusions : Low-dose Visudyne®-mediated PDT pre-treatment has the potential to selectively enhance liposomal encapsulated doxorubicin uptake in tumors but not in normal lung tissue after IV drug application in a rat model of sarcoma tumors to the lung which opens new perspectives for the treatment of superficially spreading chemoresistant tumors of the chest cavity such as mesothelioma or malignant effusion. However, the impact of PDT on macromolecular drug uptake during ILP is limited since its therapeutic advantage is circumvented by ILP-induced heterogeneicity of blood flow and drug distribution Abstract Part II Background : Photodynamic therapy (PDT) with Visudyne® acts by direct cellular phototoxicity and/or by an indirect vascular-mediated effect. Here, we demonstrate that the vessel integrity interruption by PDT can promote the extravasation of a macromolecular agent in normal tissue. To obtain extravasation in normal tissue PDT conditions were one order of magnitude more intensive than the ones in tissue containing neovessels reported in the literature. Material and Methods : Fluorescein isothiocyanate dextran (FITC-D, 2000kDa), a macromolecular agent, was intravenously injected 10 minutes before (LKO group, n=14) or 2 hours (LK2 group, n=16) after Visudyne® mediated PDT in nude mice bearing a dorsal skin fold chamber. Control animals had no PDT (CTRL group, n=8). The extravasation of FITC-D from blood vessels in striated muscle tissue was observed in both groups in real-time for up to 2500 seconds after injection. We also monitored PDT-induced leukocyte rolling in-vivo and assessed, by histology, the corresponding inflammatory reaction score in the dorsal skin fold chambers. Results : In all animals, at the applied PDT conditions, FITC-D extravasation was significantly enhanced in the PDT treated areas as compared to the surrounding non-treated areas (p<0.0001). There was no FITC-D leakage in the control animals. Animals from the LKO group had significantly less FITC-D extravasation than those from the LK2 group (p = 0.0002). In the LKO group FITC-D leakage correlated significantly with the inflammation (p < 0.001). Conclusions: At the selected conditions, Visudyne-mediated PDT promotes vascular leakage and FITC-D extravasation into the interstitial space of normal tissue. The intensity of vascular leakage depends on the time interval between PDT and FITC-D injection. This concept could be used to locally modulate the delivery of macromolecules in vivo. Résumé : La perfusion cytostatique isolée du poumon permet une administration sélective des agents cytostatiques sans implication de la circulation systémique avec une forte accumulation au niveau du poumon mais une faible pénétration dans les tumeurs. La thérapie photodynamique (PDT) qui consiste en l'application d'un sensibilisateur activé par lumière laser non- thermique d'une longueur d'onde définie permet dans certaines conditions, une augmentation de la pénétration des agents cytostatiques macromoléculaires à travers la barrière endothéliale tumorale. Nous avons exploré cet avantage thérapeutique de la PDT dans un modèle expérimental afin d'augmenter d'une manière sélective la pénétration tumorale de la doxorubicin pegylée, liposomal- encapsulée macromoléculaire (Liporubicin). Une tumeur sarcomateuse a été générée au niveau du poumon de rongeur suivie d'administration de Liporubicin, soit par voie intraveineuse soit par perfusion isolée du poumon (ILP). Une partie des animaux ont reçus un prétraitement de la tumeur et du poumon sous jacent par PDT avec Visudyne comme photosensibilisateur. Les résultats ont démontrés que la PDT permet, sous certaines conditions, une augmentation sélective de Liporubicin dans les tumeurs mais pas dans le parenchyme pulmonaire sous jacent. Après administration intraveineuse de Liporubicin et prétraitement par PDT, l'accumulation dans les tumeurs était significative par rapport au poumon, et aux tumeurs sans PDT. Le même phénomène est observé après ILP du poumon. Cependant, les différences avec ou sans PDT n'étaient pas significatives lié à und distribution hétérogène de Liporubicin dans le poumon perfusé après ILP. Dans une deuxième partie de l'expérimentation, nous avons exploré la microscopie intra-vitale pour déterminer l'extravasion des substances macromoléculaires (FITS) à travers la barrière endothéliale avec ou sans Visudyne-PDT au niveau des chambres dorsales des souris nues. Les résultats montrent qu'après PDT, l'extravasion de FITS a été augmentée de manière significative par rapport au tissu non traité. L'intensité de l'extravasion de FITS dépendait également de l'intervalle entre PDT et injection de FITS. En conclusion, les expérimentations montrent que la PDT est capable, sous certaines conditions, d'augmenter de manière significative l'extravasion des macromolécules à travers la barrière endothéliale et leur accumulation dans des tumeurs mais pas dans le parenchyme pulmonaire. Ces résultats permettent une nouvelle perspective de traitement pour des tumeurs superficielles intrathoraciques chimio-résistent comme l'épanchement pleural malin ou le mésothéliome pleural.
Resumo:
PURPOSE: Several studies observed a female advantage in the prognosis of cutaneous melanoma, for which behavioral factors or an underlying biologic mechanism might be responsible. Using complete and reliable follow-up data from four phase III trials of the European Organisation for Research and Treatment of Cancer (EORTC) Melanoma Group, we explored the female advantage across multiple end points and in relation to other important prognostic indicators. PATIENTS AND METHODS: Patients diagnosed with localized melanoma were included in EORTC adjuvant treatment trials 18832, 18871, 18952, and 18961 and randomly assigned during the period of 1984 to 2005. Cox proportional hazard models were used to calculate hazard ratios (HRs) and 95% CIs for women compared with men, adjusted for age, Breslow thickness, body site, ulceration, performed lymph node dissection, and treatment. RESULTS: A total of 2,672 patients with stage I/II melanoma were included. Women had a highly consistent and independent advantage in overall survival (adjusted HR, 0.70; 95% CI, 0.59 to 0.83), disease-specific survival (adjusted HR, 0.74; 95% CI, 0.62 to 0.88), time to lymph node metastasis (adjusted HR, 0.70; 95% CI, 0.51 to 0.96), and time to distant metastasis (adjusted HR, 0.69; 95% CI, 0.59 to 0.81). Subgroup analysis showed that the female advantage was consistent across all prognostic subgroups (with the possible exception of head and neck melanomas) and in pre- and postmenopausal age groups. CONCLUSION: Women have a consistent and independent relative advantage in all aspects of the progression of localized melanoma of approximately 30%, most likely caused by an underlying biologic sex difference.
Resumo:
The technique of sentinel lymph node (SLN) dissection is a reliable predictor of metastatic disease in the lymphatic basin draining the primary melanoma. Reverse transcription-polymerase chain reaction (RT-PCR) is emerging as a highly sensitive technique to detect micrometastases in SLNs, but its specificity has been questioned. A prospective SLN study in melanoma patients was undertaken to compare in detail immunopathological versus molecular detection methods. Sentinel lymphadenectomy was performed on 57 patients, with a total of 71 SLNs analysed. SLNs were cut in slices, which were alternatively subjected to parallel multimarker analysis by microscopy (haematoxylin and eosin and immunohistochemistry for HMB-45, S100, tyrosinase and Melan-A/MART-1) and RT-PCR (for tyrosinase and Melan-A/MART-1). Metastases were detected by both methods in 23% of the SLNs (28% of the patients). The combined use of Melan-A/MART-1 and tyrosinase amplification increased the sensitivity of PCR detection of microscopically proven micrometastases. Of the 55 immunopathologically negative SLNs, 25 were found to be positive on RT-PCR. Notably, eight of these SLNs contained naevi, all of which were positive for tyrosinase and/or Melan-A/MART-1, as detected at both mRNA and protein level. The remaining 41% of the SLNs were negative on both immunohistochemistry and RT-PCR. Analysis of a series of adjacent non-SLNs by RT-PCR confirmed the concept of orderly progression of metastasis. Clinical follow-up showed disease recurrence in 12% of the RT-PCR-positive immunopathology-negative SLNs, indicating that even an extensive immunohistochemical analysis may underestimate the presence of micrometastases. However, molecular analyses, albeit more sensitive, need to be further improved in order to attain acceptable specificity before they can be applied diagnostically.
Resumo:
AIM: To confirm the accuracy of sentinel node biopsy (SNB) procedure and its morbidity, and to investigate predictive factors for SN status and prognostic factors for disease-free survival (DFS) and disease-specific survival (DSS). MATERIALS AND METHODS: Between October 1997 and December 2004, 327 consecutive patients in one centre with clinically node-negative primary skin melanoma underwent an SNB by the triple technique, i.e. lymphoscintigraphy, blue-dye and gamma-probe. Multivariate logistic regression analyses as well as the Kaplan-Meier were performed. RESULTS: Twenty-three percent of the patients had at least one metastatic SN, which was significantly associated with Breslow thickness (p<0.001). The success rate of SNB was 99.1% and its morbidity was 7.6%. With a median follow-up of 33 months, the 5-year DFS/DSS were 43%/49% for patients with positive SN and 83.5%/87.4% for patients with negative SN, respectively. The false-negative rate of SNB was 8.6% and sensitivity 91.4%. On multivariate analysis, DFS was significantly worsened by Breslow thickness (RR=5.6, p<0.001), positive SN (RR=5.0, p<0.001) and male sex (RR=2.9, p=0.001). The presence of a metastatic SN (RR=8.4, p<0.001), male sex (RR=6.1, p<0.001), Breslow thickness (RR=3.2, p=0.013) and ulceration (RR=2.6, p=0.015) were significantly associated with a poorer DSS. CONCLUSION: SNB is a reliable procedure with high sensitivity (91.4%) and low morbidity. Breslow thickness was the only statistically significant parameter predictive of SN status. DFS was worsened in decreasing order by Breslow thickness, metastatic SN and male gender. Similarly DSS was significantly worsened by a metastatic SN, male gender, Breslow thickness and ulceration. These data reinforce the SN status as a powerful staging procedure
Resumo:
PURPOSE: To evaluate the feasibility of visualizing the stent lumen using coronary magnetic resonance angiography in vitro. MATERIAL AND METHODS: Nineteen different coronary stents were implanted in plastic tubes with an inner diameter of 3 mm. The tubes were positioned in a plastic container filled with gel and included in a closed flow circuit (constant flow 18 cm/sec). The magnetic resonance images were obtained with a dual inversion fast spin-echo sequence. For intraluminal stent imaging, subtraction images were calculated from scans with and without flow. Subsequently, intraluminal signal properties were objectively assessed and compared. RESULTS: As a function of the stent type, various degrees of in-stent signal attenuation were observed. Tantalum stents demonstrated minimal intraluminal signal attenuation. For nitinol stents, the stent lumen could be identified, but the intraluminal signal was markedly reduced. Steel stents resulted in the most pronounced intraluminal signal voids. CONCLUSIONS: With the present technique, radiofrequency penetration into the stents is strongly influenced by the stent material. Thesefindings may have important implicationsforfuture stent design and stent imaging strategies.
Resumo:
BACKGROUND Chromated glycerin (CG) is an effective, although painful, sclerosing agent for telangiectasias and reticular leg veins treatment. OBJECTIVE To determine pain level and relative efficacy of pure or one-third lidocaine-epinephrine 1% mixed chromated glycerin in a prospective randomized double-blind trial. METHOD Patients presenting with telangiectasias and reticular leg veins on the lateral aspect of the thigh (C(1A) or (S) E(P) A(S) P(N1) ) were randomized to receive pure CG or CG mixed with one-third lidocaine-epinephrine 1% (CGX) treatment. Lower limb photographs were taken before and after treatment and analyzed by blinded expert reviewers for efficacy assessment (visual vein disappearance). Patients' pain and satisfaction were assessed using visual analogue scales. RESULTS Data from 102 of 110 randomized patients could be evaluated. Patient pain scores were significantly higher when pure CG was used than with CGX (p<.001). Patient satisfaction with treatment outcome was similar in the two groups. Objective visual assessment of vessel disappearance revealed no significant difference between the two agents (p=.07). CONCLUSION Addition of lidocaine-epinephrine 1% to CG, in a ratio of one-third, significantly reduces sclerotherapy pain without affecting efficacy when treating telangiectasias and reticular leg veins. The authors have indicated no significant interest with commercial supporters.
Resumo:
Fluorescence imaging for detection of non-muscle-invasive bladder cancer is based on the selective production and accumulation of fluorescing porphyrins-mainly, protoporphyrin IX-in cancerous tissues after the instillation of Hexvix®. Although the sensitivity of this procedure is very good, its specificity is somewhat limited due to fluorescence false-positive sites. Consequently, magnification cystoscopy has been investigated in order to discriminate false from true fluorescence positive findings. Both white-light and fluorescence modes are possible with the magnification cystoscope, allowing observation of the bladder wall with magnification ranging between 30× for standard observation and 650×. The optical zooming setup allows adjusting the magnification continuously in situ. In the high-magnification (HM) regime, the smallest diameter of the field of view is 600 microns and the resolution is 2.5 microns when in contact with the bladder wall. With this cystoscope, we characterized the superficial vascularization of the fluorescing sites in order to discriminate cancerous from noncancerous tissues. This procedure allowed us to establish a classification based on observed vascular patterns. Seventy-two patients subject to Hexvix® fluorescence cystoscopy were included in the study. Comparison of HM cystoscopy classification with histopathology results confirmed 32?33 (97%) cancerous biopsies and rejected 17?20 (85%) noncancerous lesions.
Resumo:
OBJECTIVE: : Intravascular ultrasound (IVUS) generates high definition circumferential cross-sectional images and provides real-time readout of vascular dimensions, including visualization of vessel branches. We have used it as an alternative to angiography in the endovascular thoracic aneurysm repair work-up. METHODS: : Out of consecutive 203 patients with descending thoracic aortic aneurysm, 89 (43.8%) received endovascular treatment [mean age, 68 ± 8 years; range, 29-82; male, 79 (88.7%); female, 10 (11.3%)] without using angiography during the endovascular procedure. IVUS (6 F, 12.5 MHz probe or 10 F 9 MHz) coupled with fluoroscopy for the placement of radiopaque markers was used for target site identification, landing zone measurement, device positioning, and assessment of endovascular repair. RESULTS: : Hospital mortality was 4/89 (4.5%). Number of devices implanted in each patient was 1.2 (range, 1-3). X-ray exposure time was 12 ± 8 minutes. Median procedure time was 63 ± 20 minutes. Conversion to open surgery was necessary in one patient (1.1%) because of aortic dissection. In nine patients (10.1%) left subclavian artery was covered because of a short neck. Two patients (2.2%) had vascular access lesions and required surgical repair. One patient developed paraplegia (1.1%). Early endoleak was observed in eight patients (8.9%) and 4 (4.5%) required additional procedures (proximal or distal extensions). Late conversion was necessary in one patient (1.1%). CONCLUSIONS: : IVUS provides all information necessary for device selection, target site identification as well as safe and correct deployment of thoracic endoprostheses and makes periprocedural angiography unnecessary, thus avoiding the risk of renal failure because of contrast medium.
Resumo:
Silymarin is the flavonoids extracted from the seeds of Silybum marianum (L) Gearth as a mixture of three structural isomers: silybin, silydianin and silychristin, the former being the most active component. Silymarin protects liver cell membrane against hepatotoxic agents and improves liver function in experimental animals and humans. It is generally accepted that silymarin exerts a membrane-stabilizing action preventing or inhibiting membrane peroxidation. The experiments with soybean lipoxygenase showed that the three components of silymarin brought about a concentration-dependent non-competitive inhibition of the lipoxygenase. The experiments also showed an analogous interaction with animal lipoxygenase, thus showing that an inhibition of the peroxidation of the fatty acid in vivo was self-evident. Silybin almost completely suppressed the formation of PG at the highest concentration (0.3 mM) and proved to be an inhibitor of PG synthesis in vitro. In our experiments, silybin at lower dose (65 mg/Kg) decreased liver lipoperoxide content and microsomal lipoperoxidation to 84.5% and 68.55% of those of the scalded control rats respectively, and prevented the decrease of liver microsomal cytochrome p-450 content and p-nitroanisole-0-demethylase activity 24 h post-scalding. Effects of silymarin on cardiovascular systen have been studied in this university since 1980. O. O silymarin 800 mg/Kg/d or silybin 600 mg/Kg/d reduced plasma total cholesterol, LDL-C and VLDL-C. They however, enhanced HDL-C in hyperlipenic rats. Further studies showed that silymarin enhanced HDL-C in hyperlipemic rats. Further studies showed that silymarin enhanced HDL-C but didn't affect HDL-C, a property of this component which is beneficial to treatment of atherosclerosis. The results showed silymarin 80 mg or silybin 60 mg decreased in vitro platelet aggregation (porcentagem) in rats. The maximal platelet aggregation induced by ADP declined significantly, and time to reach maximal platelet aggregation and five-minute disaggregation didn't change. In our experiments, iv silybin 22,4 mg/kg lowered the amplitude and duration of diastolic blood pressure (DBP) more than those of systolic (SBP), but the descending aortic blood flow, cardiac contractility and ECG did not change significantly in anesthetized open-chest cats. The results indicated a reduction of peripheral resistance and dilatatory action on the resistant blood vessels. These effects are beneficial to coronary heart disease. We also observed the effects of silybin on morphological change, the release of glutamic oxaloacetate aminotrasferase (GOT) and lactate dehydrogenase (LDH) as well as the radioactivity of 3H-TdR incorporated into DNA in normal cardiac cells and cells infected by coxsackie B5, virus os newborn rats. The results showed that silynin did not affect the morphology of normal cell, and that the pathological change of cells infected by virus was delayed and reduced as compared to control. We have investigated the effect of silybin on synthesis and release of LTs in the cultured porcine cerebral basilar arteries (PCBA). Silybin 100 and 500 µmol/L declined the amounts of LTs released from the PCBA incubsated in the presence of A 23187, AA and indomenthacin. The result suggests that silybin can inhibit the activity of 5-lipoxygenase of cerebral blood vessel and may protect the brain from ischemia.
Resumo:
Angiogenesis, the formation of new blood vessels sprouting from existing ones, occurs in several situations like wound healing, tissue remodeling, and near growing tumors. Under hypoxic conditions, tumor cells secrete growth factors, including VEGF. VEGF activates endothelial cells (ECs) in nearby vessels, leading to the migration of ECs out of the vessel and the formation of growing sprouts. A key process in angiogenesis is cellular self-organization, and previous modeling studies have identified mechanisms for producing networks and sprouts. Most theoretical studies of cellular self-organization during angiogenesis have ignored the interactions of ECs with the extra-cellular matrix (ECM), the jelly or hard materials that cells live in. Apart from providing structural support to cells, the ECM may play a key role in the coordination of cellular motility during angiogenesis. For example, by modifying the ECM, ECs can affect the motility of other ECs, long after they have left. Here, we present an explorative study of the cellular self-organization resulting from such ECM-coordinated cell migration. We show that a set of biologically-motivated, cell behavioral rules, including chemotaxis, haptotaxis, haptokinesis, and ECM-guided proliferation suffice for forming sprouts and branching vascular trees.
Resumo:
A mycotic pseudoaneurysm of the popliteal artery is usually a consequence of septic embolization and often a result of bacterial endocarditis. Conventional treatment is surgical and avoids the placement of foreign material in infected sites. Here we report our treatment of a 59-year-old man who presented with a rupture of a mycotic pseudoaneurysm of the popliteal artery due to septic embolism from sternoclavicular infectious arthritis. Radiological investigations are included. This is the first documented case of septic arthritis complicated by a rupture of a mycotic popliteal false aneurysm and treated using an endovascular procedure. Combining endovascular stent grafts with evacuation of the joint abscess and antibiotic therapy can offer a safe alternative for frail and unstable patients.