902 resultados para lymph node metastasis
Resumo:
To understand how virulent mycobacteria subvert host immunity and establish disease, we examined the differential response of mice to infection with various human outbreak Mycobacterium tuberculosis clinical isolates. One clinical isolate, HN878, was found to be hypervirulent, as demonstrated by unusually early death of infected immune-competent mice, compared with infection with other clinical isolates. The differential effect on survival required lymphocyte function because severe combined immunodeficiency (SCID) mice infected with HN878 or other clinical isolates all died at the same rate. The hypervirulence of HN878 was associated with failure to induce M. tuberculosis-specific proliferation and IFN-γ production by spleen and lymph node cells from infected mice. In addition, 2- to 4-fold lower levels of tumor necrosis factor-α (TNF-α), IL-6, IL-12, and IFN-γ mRNAs were observed in lungs of HN878-infected mice. IL-10, IL-4, and IL-5 mRNA levels were not significantly elevated in lungs of HN878 infected mice. In contrast, IFN-α mRNA levels were significantly higher in lungs of these mice. To further investigate the role of Type 1 IFNs, mice infected with HN878 were treated intranasally with purified IFN-α/β. The treatment resulted in increased lung bacillary loads and even further reduced survival. These results suggest that the hypervirulence of HN878 may be due to failure of this strain to stimulate Th1 type immunity. In addition, the lack of development of Th1 immunity in response to HN878 appears to be associated with increased induction of Type 1 IFNs.
Resumo:
Although the protective cellular immune response to Mycobacterium tuberculosis requires recruitment of macrophages and T lymphocytes to the site of infection, the signals that regulate this trafficking have not been defined. We investigated the role of C-C chemokine receptor 2 (CCR2)-dependent cell recruitment in the protective response to M. tuberculosis. CCR2−/− mice died early after infection and had 100-fold more bacteria in their lungs than did CCR2+/+ mice. CCR2−/− mice exhibited an early defect in macrophage recruitment to the lung and a later defect in recruitment of dendritic cells and T cells to the lung. CCR2−/− mice also had fewer macrophages and dendritic cells recruited to the mediastinal lymph node (MLN) after infection. T cell migration through the MLN was similar in CCR2−/− and CCR2+/+ mice. However, T cell priming was delayed in the MLNs of the CCR2−/− mice, and fewer CD4+ and CD8+ T cells primed to produce IFN-γ accumulated in the lungs of the CCR2−/− mice. These data demonstrate that cellular responses mediated by activation of CCR2 are essential in the initial immune response and control of infection with M. tuberculosis.
Resumo:
The tissue distribution of CD4 lymphocytes in normal C57/BL mice and CD4 knockout mice was determined by biodistribution measurements and gamma camera imaging with an 111In-labeled rat IgG2b monoclonal antibody directed against the murine CD-4 antigen. In normal mice high concentrations of antibody accumulated in the spleen and lymph nodes. At 45 hr after injection, the concentration of radiolabel in the spleen and lymph nodes of normal mice were 10- to 20-fold greater than in the corresponding tissue of the CD4 knockout mice and nonlymphoid tissues of both types of mice. At 24 and 45 hr, gamma camera images showed high concentrations of radiolabeled antibody in lymph node and spleen of normal but not knockout mice. These results indicate that radioimmunoscintigraphy with 111In-anti-CD4 is an excellent method for studying tissue distribution of CD lymphocytes in mice. Using an equivalent anti-human CD antibody, this method might be useful for studying the pathophysiology of conditions in which these cells play a critical role and for monitoring therapies for these disorders.
Resumo:
Oral administration of autoantigens can prevent and partially suppress autoimmune diseases in a number of experimental models, Depending on the dose of antigen fed, this approach appears to involve distinct yet reversible and short-lasting mechanisms (anergy/deletion and suppression) and usually requires repeated feeding of large (suppression) to massive (anergy/deletion) amounts of autoantigens to be effective. Most importantly, this approach is relatively less effective in animals already systemically sensitized to the fed antigen, such as in animals already harboring autoreactive T cells and, thus, presumably also in humans suffering from an autoimmune disorder. We have previously shown that feeding a single dose of minute amounts of antigens conjugated to cholera toxin B subunit (CTB) can effectively suppress delayed-type hypersensitivity reactions in systemically immune animals. We now report that feeding small amounts of myelin basic protein (MBP) conjugated to CTB either before or after disease induction protected rats from experimental autoimmune encephalomyelitis. Such treatment was as effective in suppressing interleukin 2 production and proliferative responses of lymph node cells to MBP as treatment involving repeated feeding with much larger (50- to 100-fold) doses of free MBP. Different from the latter treatment, which led to decreased production of interferon-gamma in lymph nodes, low-dose oral CTB-MBP treatment was associated with increased interferon-gamma production. Most importantly, low-dose oral CTB-MBP treatment greatly reduced the level of leukocyte infiltration into spinal cord tissue compared with treatment with repeated feeding of large doses of MBP. These results suggest that the protection from experimental autoimmune encephalomyelitis achieved by feeding CTB-conjugated myelin autoantigen involves immunomodulating mechanisms that are distinct from those implicated by conventional protocols of oral tolerance induction.
Resumo:
In the present study, we have determined the kinetics of constitutive expression of a panel of cytokines [interleukin (IL) 2, IL-4, IL-6, IL-10, interferon gamma (IFN-gamma), and tumor necrosis factor alpha (TNF-alpha)] in sequential peripheral blood mononuclear cell samples from nine individuals with primary human immunodeficiency virus infection. Expression of IL-2 and IL-4 was barely detected in peripheral blood mononuclear cells. However, substantial levels of IL-2 expression were found in mononuclear cells isolated from lymph node. Expression of IL-6 was detected in only three of nine patients, and IL-6 expression was observed when transition from the acute to the chronic phase had already occurred. Expression of IL-10 and TNF-alpha was consistently observed in all patients tested, and levels of both cytokines were either stable or progressively increased over time. Similar to IL-10 and TNF-alpha, IFN-gamma expression was detected in all patients; however, in five of nine patients, IFN-gamma expression peaked very early during primary infection. The early peak in IFN-gamma expression coincided with oligoclonal expansions of CD8+ T cells in five of six patients, and CD8+ T cells mostly accounted for the expression of this cytokine. These results indicate that high levels of expression of proinflammatory cytokines are associated with primary infection and that the cytokine response during this phase of infection is strongly influenced by oligoclonal expansions of CD8+ T cells.
Resumo:
Like human gliomas, the rat 9L gliosarcoma secretes the immunosuppressive transforming growth factor beta (TGF-beta). Using the 9L model, we tested our hypothesis that genetic modification of glioma cells to block TGF-beta expression may enhance their immunogenicity and make them more suitable for active tumor immunotherapy. Subcutaneous immunizations of tumor-bearing animals with 9L cells genetically modified to inhibit TGF-beta expression with an antisense plasmid vector resulted in a significantly higher number of animals surviving for 12 weeks (11/11, 100%) compared to immunizations with control vector-modified 9L cells (2/15, 13%) or 9L cells transduced with an interleukin 2 retroviral vector (3/10, 30%) (P < 0.001 for both comparisons). Histologic evaluation of implantation sites 12 weeks after treatment revealed no evidence of residual tumor. In vitro tumor cytotoxicity assays with lymph node effector cells revealed a 3- to 4-fold increase in lytic activity for the animals immunized with TGF-beta antisense-modified tumor cells compared to immunizations with control vector or interleukin 2 gene-modified tumor cells. These results indicate that inhibition of TGF-beta expression significantly enhances tumor-cell immunogenicity and supports future clinical evaluation of TGF-beta antisense gene therapy for TGF-beta-expressing tumors.
Resumo:
Major histocompatibility complex (MHC) class I and II molecules are loaded with peptides in distinct subcellular compartments. The transporter associated with antigen processing (TAP) is responsible for delivering peptides derived from cytosolic proteins to the endoplasmic reticulum, where they bind to class I molecules, while the invariant chain (Ii) directs class II molecules to endosomal compartments, where they bind peptides originating mostly from exogenous sources. Mice carrying null mutations of the TAP1 or Ii genes (TAP10) or Ii0, respectively) have been useful tools for elucidating the two MHC/peptide loading pathways. To evaluate to what extent these pathways functionally intersect, we have studied the biosynthesis of MHC molecules and the generation of T cells in Ii0TAP10 double-mutant mice. We find that the assembly and expression of class II molecules in Ii0 and Ii0TAP10 animals are indistinguishable and that formation and display of class I molecules is the same in TAP10 and Ii0TAP10 animals. Thymic selection in the double mutants is as expected, with reduced numbers of both CD4+ CD8- and CD4- CD8+ thymocyte compartments. Surprisingly, lymph node T-cell populations look almost normal; we propose that population expansion of peripheral T cells normalizes the numbers of CD4+ and CD8+ cells in Ii0TAP10 mice.
Resumo:
Aberrant glycosylation of the mucin molecule (encoded by the gene MUC-1) on human epithelial cell tumors leads to the exposure of tumor-associated epitopes recognized by patients' antibodies and cytotoxic T cells. Consequently, these epitopes could be considered targets for immunotherapy. We designed a cellular vaccine, employing, instead of tumor cells, autologous Epstein-Barr virus (EBV)-immortalized B cells as carriers of tumor-associated mucin, to take advantage of their costimulatory molecules for T-cell activation. The vaccine was tested in chimpanzees because of the identity of the human and chimpanzee MUC-1 tandem repeat sequence. EBV-immortalized B cells derived from two chimpanzees were transfected with MUC-1 cDNA, treated with glycosylation inhibitor phenyl-N-acetyl-alpha-D-galactosaminide to expose tumor-associated epitopes, irradiated, and injected subcutaneously four times at 3-week intervals. One vaccine preparation also contained cells transduced with the interleukin 2 (IL-2) cDNA and producing low levels of IL-2. Already after the first injection we found in the peripheral blood measurable frequency of cytotoxic T-cell precursors specific for underglycosylated mucin. The highest frequency observed was after the last boost, in the lymph node draining the vaccination site. Delayed-type hypersensitivity reaction to the injected immunogens was also induced, whereas no appearance of mucin-specific antibodies was seen. Long-term observation of the animals yielded no signs of adverse effects of this immunization. Autologous antigen-presenting cells, like EBV-immortalized B cells, expressing tumor-associated antigens are potentially useful immunogens for induction of cellular anti-tumor responses in vivo.
Resumo:
A cDNA encoding a signal transduction protein with a Src homology 2 (SH2) domain and a tyrosine phosphorylation site was cloned from a rat lymph node cDNA library. This protein, which we designate Lnk, has a calculated molecular weight of 33,988. When T lymphocytes were activated by antibody-mediated crosslinking of the T-cell receptor and CD4, Lnk became tyrosine phosphorylated. In activated T lymphocytes, phospholipase C gamma 1, phosphatidylinositol 3-kinase, and Grb-2 coimmunoprecipitated with Lnk. Our results suggest that Lnk becomes tyrosine phosphorylated and links the immediate tyrosine phosphorylation signals of the TCR to the distal phosphatidylinositol 3-kinase, phospholipase C gamma 1 and Ras signaling pathways through its multifunctional tyrosine phosphorylation site.
Resumo:
The nonlytic suppression of human immunodeficiency virus (HIV) production from infected CD4+ T cells by CD8+ lymphocytes from HIV-infected individuals is one of the most potent host-mediated antiviral activities observed in vitro. We demonstrate that the pleiotropic cytokine interleukin 2 (IL-2), but not IL-12, is a potent inducer of the CD8+ HIV suppressor phenomenon. IL-2 induces HIV expression in peripheral blood or lymph node mononuclear cells from HIV-infected individuals in the absence of CD8+ T cells. However, IL-2 induces CD8+ T cells to suppress HIV expression when added back to these cultures, and this effect dramatically supersedes the ability to IL-2 to induce HIV expression. Five to 25 times fewer CD8+ cells were required to obtain comparable levels of inhibition of viral production if they were activated in the presence of IL-2 as compared with IL-12 or no exogenous cytokine. Furthermore, IL-2 appeared either to induce a qualitative increase in HIV suppressor cell activity or to increase the relative frequency of suppressor cells in the activated (CD25+) CD8+ populations. Analyses of proviral levels in peripheral blood mononuclear cells suggest that CD8+ T cell-mediated lysis of in vivo infected cells is not induced by IL-2. These results have implications for our understanding of the effects of impaired IL-2 production during HIV disease as well as the overall effects of IL-2-based immunotherapy on HIV replication in vivo.
Resumo:
Although several immunologic and virologic markers measured in peripheral blood are useful for predicting accelerated progression of human immunodeficiency virus (HIV) disease, their validity for evaluating the response to antiretroviral therapy and their ability to accurately reflect changes in lymphoid organs remain unclear. In the present study, changes in certain virologic markers have been analyzed in peripheral blood and lymphoid tissue during antiretroviral therapy. Sixteen HIV-infected individuals who were receiving antiretroviral therapy with zidovudine for > or = 6 months were randomly assigned either to continue on zidovudine alone or to add didanosine for 8 weeks. Lymph node biopsies were performed at baseline and after 8 weeks. Viral burden (i.e., HIV DNA copies per 10(6) mononuclear cells) and virus replication in mononuclear cells isolated from peripheral blood and lymph node and plasma viremia were determined by semiquantitative polymerase chain reaction assays. Virologic and immunologic markers remained unchanged in peripheral blood and lymph node of patients who continued on zidovudine alone. In contrast, a decrease in virus replication in lymph nodes was observed in four of six patients who added didanosine to their regimen, and this was associated with a decrease in plasma viremia. These results indicate that decreases in plasma viremia detected during antiretroviral therapy reflect downregulation of virus replication in lymphoid tissue.
Resumo:
Concentrações séricas basais da proteína amiloide sérica A (SAA) estão significativamente aumentadas em pacientes com câncer e alguns autores sugerem uma relação causal. Trabalho anterior do grupo mostrou que a SAA induz a proliferação de duas linhagens de glioblastoma humano e afeta os processos de invasividade in vitro, sustentando um papel pró-tumoral para esta proteína. Com base nesse trabalho, investigamos a abrangência dos efeitos de SAA para outro tipo de célula tumoral e para isso escolhemos um painel de linhagens de melanoma humano e uma linhagem primária obtida a partir de aspirado de linfonodo de paciente com melanoma, por nós isolada. Observamos que apesar da célula precursora de melanomas, isto é, melanócito, não produzir SAA, todas as linhagens de melanoma produziram a proteína e expressaram alguns dos seus receptores. Além disso, quando estas células foram estimuladas com SAA houve uma inibição da proliferação em tempos curtos de exposição (48 horas) e efeitos citotóxicos após um tempo maior (7 dias). A SAA também afetou processos de invasividade e a produção das citocinas IL-6, IL-8 e TNF-α. Aos avaliarmos o efeito da SAA na interação das células de melanoma com células do sistema imune, vimos que a SAA ativou uma resposta imune anti-tumoral aumentando a expressão de moléculas co-estumolatórias, como CD69 e HLA-DR, e sua função citotóxica. Ainda, vimos que a produção de TNF-α, IFN-γ, IL-10, IL-1β e IL-8 estimuladas por SAA podem contribuir com os efeitos desta. De forma geral estes resultados nos levam a crer que a SAA tem atividade anti-tumoral em melanomas. Finalizando, com base na importância do desenvolvimento da resistência às terapias atuais para o melanoma, observamos que em células resistentes ao PLX4032, um inibidor de BRAF, os efeitos imunomodulatórios induzidos pela SAA estão abolidos, possivelmente identificando um novo componente da resistência.
Resumo:
INTRODUÇÃO: o câncer é a doença que mais mata pessoas com idade abaixo de 85 anos e é um problema de saúde pública. Os tumores podem expressar em determinada fase de seu desenvolvimento proteínas anômalas que podem ser alvo de métodos diagnósticos e de intervenções terapêuticas. A expressão de NY-ESO-1 é detectada em 20 a 40% dos melanomas. Há evidências que esta expressão é mais freqüente em tumores de estágios mais avançados e está associada a um pior prognóstico. OBJETIVOS: determinar a frequência de expressão da proteína NY-ESO-1 no melanoma cutâneo e tentar correlacioná-la com o índice de Breslow, aspectos histopatológicos do melanoma, incluindo o infiltrado linfocítico tumoral, e a morbi-mortalidade dos pacientes. MÉTODOS: o presente estudo é longitudinal de coorte retrospectiva e foi realizado de agosto de 2009 a outubro de 2015. Foram selecionados 89 melanomas de 87 pacientes do Ambulatório de Tumores do Departamento de Dermatologia da FMUSP, divididos em 3 grupos, sendo: grupo 1: 34 melanomas com índice de Breslow <= 1,0 mm; grupo 2: 29 melanomas com índice de Breslow entre 1,1 - 4,0 mm e grupo 3: 26 melanomas com índice de Breslow >= 4,0 mm. As lâminas dos exames anátomo-patológicos destes pacientes foram revisadas quanto ao diagnóstico de melanoma, seu índice de Breslow e a presença de infiltrado linfocítico tumoral. A seguir, realizou-se exame de imunohistoquímica para a determinação da presença do antígeno NY-ESO-1 em todos os 89 tumores coletados e em mais 20 nevos (11 displásicos e 9 intradérmicos) escolhidos ao acaso. Através da revisão dos dados do prontuário, foram obtidos os dados clínicos de: idade, sexo, raça, fototipo da pele, local de aparecimento do melanoma, status do linfonodo sentinela quando realizado, desenvolvimento de metástases e sobrevida dos pacientes. Os dados anátomo-patológicos do tumor analisados foram: tipo histológico, presença de ulceração, e tipo de infiltrado linfocítico tumoral. Nos melanomas que apresentavam infiltrado linfocítico tumoral, foram realizados testes imunohistoquímicos para pesquisa de células CD3+, CD8+, FoxP3+ e CD8+FoxP3+ (duplamente positivas). RESULTADOS: O antígeno NY-ESO-1 esteve presente em 19% dos melanomas cutâneos primários e não foi detectado em nenhum dos 20 nevos pesquisados. A expressão do antígeno NY-ESO-1 esteve estatisticamente relacionada a tumores com espessuras maiores. Apresentou também uma associação inversa com o tipo extensivo superficial em relação aos outros tipos histológicos. O infiltrado linfocítico tumoral dos melanomas NY-ESO-1 positivos continha menor número de células CD3+, que se encontravam isoladas ou arranjadas em pequenos grupos de até 5 células, o que contrastava significantemente com os tumores NY-ESO-1 negativos, com maior densidade de células CD3+, dispostas em grandes grupos, com 6 ou mais células. A expressão da proteína NY-ESO-1 não esteve associada à idade, ao sexo, ao fototipo, ao sítio primário do tumor, à presença de ulceração, ao status do linfonodo sentinela, ao desenvolvimento de metástases ou à sobrevida. CONCLUSÕES: Há expressão de NY-ESO-1 em uma porcentagem considerável dos melanomas, principalmente nos mais espessos. O menor número de células CD3+ no infiltrado linfocítico tumoral, acrescido ao fato destas células estarem isoladas ou em pequenos grupos, sugere que embora imunogênico, a expressão do antígeno NY-ESO-1 não resulta num estímulo eficaz do sistema imune no combate ao tumor. O desenvolvimento de uma vacina para estes pacientes poderá, no futuro, aumentar as possibilidades terapêuticas do melanoma
Resumo:
Trabalho Final do Curso de Mestrado Integrado em Medicina, Faculdade de Medicina, Universidade de Lisboa, 2014
Resumo:
Trabalho Final do Curso de Mestrado Integrado em Medicina, Faculdade de Medicina, Universidade de Lisboa, 2014