966 resultados para low temperature analysis
Resumo:
In this study, we investigated the size, submicrometer-scale structure, and aggregation state of ZnS formed by sulfate-reducing bacteria (SRB) in a SRB-dominated biofilm growing on degraded wood in cold (Tsimilar to8degreesC), circumneutral-pH (7.2-8.5) waters draining from an abandoned, carbonate-hosted Pb-Zn mine. High-resolution transmission electron microscope (HRTEM) data reveal that the earliest biologically induced precipitates are crystalline ZnS nanoparticles 1-5 nm in diameter. Although most nanocrystals have the sphalerite structure, nanocrystals of wurtzite are also present, consistent with a predicted size dependence for ZnS phase stability. Nearly all the nanocrystals are concentrated into 1-5 mum diameter spheroidal aggregates that display concentric banding patterns indicative of episodic precipitation and flocculation. Abundant disordered stacking sequences and faceted, porous crystal-aggregate morphologies are consistent with aggregation-driven growth of ZnS nanocrystals prior to and/or during spheroid formation. Spheroids are typically coated by organic polymers or associated with microbial cellular surfaces, and are concentrated roughly into layers within the biofilm. Size, shape, structure, degree of crystallinity, and polymer associations will all impact ZnS solubility, aggregation and coarsening behavior, transport in groundwater, and potential for deposition by sedimentation. Results presented here reveal nanometer- to micrometer-scale attributes of biologically induced ZnS formation likely to be relevant to sequestration via bacterial sulfate reduction (BSR) of other potential contaminant metal(loid)s, such as Pb2+, Cd2+, As3+ and Hg2+, into metal sulfides. The results highlight the importance of basic mineralogical information for accurate prediction and monitoring of long-term contaminant metal mobility and bioavailability in natural and constructed bioremediation systems. Our observations also provoke interesting questions regarding the role of size-dependent phase stability in biomineralization and provide new insights into the origin of submicrometer- to millimeter-scale petrographic features observed in low-temperature sedimentary sulfide ore deposits.
Resumo:
The syntheses of the hexadentate ligands 2,2,10,10-tetra(methyleneamine)-4,8-dithiaundecane (PrN(4)S(2)amp), 2,2,11,11-tetra(methyleneamine)-4,9-dithiadodecane (BuN(4)S(2)amp), and 1,2-bis(4,4-methyleneamine)-2-thiapentyl)benzene (XyN(4)S(2)amp) are reported and the complexes [Co(RN(4)S(2)amp)](3+) (R = Pr, Bu, Xy) characterised by single crystal X-ray study. The low-temperature (11 K) absorption spectra have been measured in Nafion films. From the observed positions of both spin-allowed (1)A(1g) --> T-1(1g) and (1)A(1g) --> T-1(2g) and spin forbidden (1)A(1g) --> T-3(1g) and (1)A(1g) --> T-3(2g) bands, octahedral ligand-field parameters (10D(q), B and C) have been determined. DFT calculations suggest that significant interaction between the d-d and CT excitations occurs for the complexes. The calculations offer an explanation for the observed deviations from linearity of the relationship between Co-59 magnetogyric ratio and beta(DeltaE)(-1) (beta = the nephelauxetic ratio; DeltaE the energy of the (1)A(1g) --> T-1(1g) transition) for a series of amine and mixed amine/thioether donor complexes.
Resumo:
Reaction of 1,1-dichloro-2,5-diphenylcyclopropabenzene 6 with Meldrum's acid 8 in the presence of pyridine leads to coupling of the cycloproparenyl cation 7 with the stabilized diketo anion 9. Subsequent, spontaneous, base-induced dehydrochlorination gives the alkylidenecyclopropabenzene 11 in a one-pot reaction. Flash vacuum thermolysis of 11 at 650 degreesC ejects acetone and carbon dioxide, giving cyclopropabenzenylldenethenone 12 that is isolated in an Ar matrix at 20 K and characterized by a strong ketene band at 2107 cm(-1) in the IR spectrum.
Resumo:
The uptake and metabolism profiles of ginsenoside Rh2 and its aglycon protopanaxadiol (ppd) were studied in the human epithelial Caco-2 cell line. High-performance liquid chromatography-mass spectrometry was applied to determine Rh2 and its aglycon ppd concentration in the cells at different pH, temperature, concentration levels and in the presence or absence of inhibitors. Rh2 uptake was time and concentration dependent, and its uptake rates were reduced by metabolic inhibitors and influenced by low temperature, thus indicating that the absorption process was energy-dependent. Drug uptake was maximal when the extracellular pH was 7.0 for Rh2 and 8.0 for ppd. Rh2 kinetic analysis showed that a non-saturable component (K-d 0.17 nmol (.) h(-1) (.) mg(-1) protein) and an active transport system with a K-m of 3.95 mumol (.) l(-1) and a V-max of 4.78 nmol(.)h(-1) (.)mg(-1) protein were responsible for the drug uptake. Kinetic analysis of ppd showed a non-saturable component (K-d 0.78 nmol (.) h(-1) (.) mg(-1) protein). It was suggested that active extrusion of P-glycoprotein and drug degradation in the intestine may influence Rh2 bioavailability.
Resumo:
Low temperature injury (LTI) of roses (Rosa hybrida L.) is difficult to assess by visual observation. Relative chlorophyll fluorescence (CF; F-v/F-m) is a non-invasive technique that provides an index of stress effects on photosystem 11 (PS 11) activity. This instrumental technique allows determination of the photosynthetic efficiency of plant tissues containing chloroplasts, such as rose leaves. In the present study, pre- and Post-Storage measurements of F-v/F-m were carried out to assess LTI in 'First Red' and 'Akito' roses harvested year round. Relationships between the pre-harvest environment conditions of temperature, relative humidity and photon flux density (PFD), F-v/F-m, and, vase life duration after storage are reported. After harvest, roses were stored at 1, 5 and 10 degrees C for 10 days. Non-stored roses were the control treatment. F-v/F-m ratios were reduced following storage, suggesting LTI of roses. However, reductions in F-v/F-m were not closely correlated with reduced vase life duration and were seasonally dependent. Only during winter experiments was F-v/F-m of roses stored at 1 degrees C significantly (P <= 0.001) lower compared to F-v/F-m of non-stored control roses and roses stored at 5 and 10 degrees C. Thus, the fall of F-v/F-m was due to an interaction of growing season and storage at 1 degrees C. Vase lives of roses grown during winter were significantly (P <= 0.001) shorter compared to roses grown during summer. Length of vase life was intermediate for roses grown during autumn and spring. Because of the lack of correlation between F-v/F-m and post-storage vase life it is concluded that the CF parameter F-v/F-m is nota practical index for assessing LTI in cold-stored roses. Higher PFD and temperature in summer were positively and significantly correlated with maintenance of post-storage FvIF ratios and longer vase life. It is suggested that shorter vase lives and lower post-storage F-v/F-m values after storage at 1 degrees C are consequences of reduced photosynthesis and smaller carbohydrate pools in winter-harvested roses. (c) 2004 Elsevier B.V All rights reserved.
Resumo:
The late Early to early Middle Eocene Okanagan Highlands fossil sites, spanning -1000 km north-south (northeastern Washington State, southern British Columbia) provide an opportunity to reconstruct biotic communities across a broad upland landscape during the warmest part of the Cenozoic. Plant taxa from these fossil sites are characteristic of the modern eastern North American deciduous forest zone, principally the mixed mesophytic forest, but also include extinct taxa, taxa known only from eastern Asian mesothermal forests, and a small number of taxa restricted to the present-day North American west coast coniferous biome. In this preliminary report, paleoclimates and forest types are reconstructed using collections from Republic in Washington State, USA., and Princeton, Quilchena, Falkland, McAbee, Hat Creek, Horsefly, and Driftwood Canyon in British Columbia, Canada. Both leaf margin analysis (LMA) and quantitative bioclimatic analysis of identified nearest living relatives of megaflora indicated upper microthermal to lower mesothermal moist environments (MAT -10-15 degrees C, CMMT > 0 degrees C, MAP > 100 cm/year). Some taxa common to most sites suggest cool conditions (e.g., Abies, other Pinaceae; Alnus, other Betulaceae). However, all floras contain a substantive broadleaf deciduous element (e.g., Fagaceae, Juglandaceae) and conifers (e.g., Metasequoia) with the bioclimatic analysis yielding slightly higher MAT than LMA. Thermophilic (principally mesothermal) taxa include various insects, the aquatic fern Azolla, palms, the banana relative Ensete, taxodiaceous conifers, Eucommia and Gordonia, taxa which may have occurred near their climatic limits. The mixture of thermophilic and temperate insect and plant taxa indicates low-temperature seasonality (i.e., highly equable climate).
Resumo:
Increased grain yield in response to high rates of application of nitrogen (N) fertiliser is often limited by increased spikelet sterility, particularly under low temperature conditions in the New South Wales ( NSW) rice industry. In 3 field experiments, different N rates were applied for different sowing dates to investigate the interaction between N rate and temperature during microspore development on spikelet sterility and grain yield. In one experiment the effect of water depth on spikelet sterility was also investigated. Engorged pollen production, spikelet sterility, and yield and its components were recorded. Application of N affected a few different processes that lead into spikelet sterility. Application of N at both pre-flood (PF) and panicle initiation ( PI) significantly reduced the number of engorged pollen grains per anther, which was negatively correlated with spikelet sterility. Application of N and low temperature during microspore development with the absence of deep water also decreased pollen engorgement efficiency ( the percentage of pollen grains that were engorged). Application of N further increased spikelet density, which, in turn, increased both spikelet sterility and grain yield. The combined effect of spikelet density and low temperature during microspore development explained the 44% of variation in the number of engorged pollen grains per anther. Grain yield was decreased by low temperature during microspore development in the shallow water when N was applied. Spikelet sterility as a result of late sowing was strongly correlated with minimum temperature during flowering. It is concluded that N application reduced pollen number per anther as a result of increased spikelet density, and this made the spikelets more susceptible to low temperature, causing increased spikelet sterility.
Resumo:
Low temperature during microspore development increases spikelet sterility and reduces grain yield in rice (Oryza sativa L.). The objectives of this study were to determine genotypic variation in spikelet sterility in the field in response to low-temperature and then to examine the use of physio-morphological traits at flowering to screen for cold tolerance. Multiple-sown field experiments were conducted over 4 consecutive years in the rice-growing region of Australia to increase the likelihood of encountering low-temperature during microspore development. More than 50 cultivars of various origins were evaluated, with 7 cultivars common to all 4 years. The average minimum temperature for 9 days during microspore development was used as a covariate in the analysis to compare cultivars at a similar temperature. The low-temperature conditions in Year 4 identified cold-tolerant cultivars such as Hayayuki and HSC55 and susceptible cultivars such as Sasanishiki and Doongara. After low temperature conditions, spikelet sterility was negatively correlated with the number of engorged pollen grains, anther length, anther area, anther width, and stigma area. The number of engorged pollen grains and anther length were found to be facultative traits as their relationships with spikelet sterility were identified only after cold water exposure and did not exist under non-stressed conditions.
Resumo:
We obtain phase diagrams of regular and irregular finite-connectivity spin glasses. Contact is first established between properties of the phase diagram and the performance of low-density parity check (LDPC) codes within the replica symmetric (RS) ansatz. We then study the location of the dynamical and critical transition points of these systems within the one step replica symmetry breaking theory (RSB), extending similar calculations that have been performed in the past for the Bethe spin-glass problem. We observe that the location of the dynamical transition line does change within the RSB theory, in comparison with the results obtained in the RS case. For LDPC decoding of messages transmitted over the binary erasure channel we find, at zero temperature and rate R=14, an RS critical transition point at pc 0.67 while the critical RSB transition point is located at pc 0.7450±0.0050, to be compared with the corresponding Shannon bound 1-R. For the binary symmetric channel we show that the low temperature reentrant behavior of the dynamical transition line, observed within the RS ansatz, changes its location when the RSB ansatz is employed; the dynamical transition point occurs at higher values of the channel noise. Possible practical implications to improve the performance of the state-of-the-art error correcting codes are discussed. © 2006 The American Physical Society.
Resumo:
With the increasing use of digital computers for data acquisition and digital process control, frequency domain transducers have become very attractive due to their virtual digital output. Essentially they are electrically maintained oscillators where the sensor is the controlling resonator.They are designed to make the frequency a function of the physical parameter being measured. Because of their high quality factor, mechanical resonators give very good frequency stability and are widely used as sensors. For this work symmetrical mechanical resonators such as the tuning fork were considered, to be the most promising. These are dynamically clamped and can be designed to have extensive regions where no vibrations occur.This enables the resonators to be robustly mounted in a way convenient for various applications. Designs for the measurement of fluid density and tension have been produced. The principle of the design of the resonator for fluid density measurement is a thin gap (trapping a lamina of fluid) between its two members which vibrate in antiphase.An analysis of the inter action between this resonator and the fluid lamina has carried out.In gases narrow gaps are needed for a good sensitivity and the use of the material fused quartz, because of its low density and very low temperature coefficient, is ideally suitable. In liquids an adequate sensitivity is achieved even with a wide lamina gap. Practical designs of such transducers have been evolved. The accuracy for liquid measurements is better than 1%. For gases it was found that, in air, a change of atmospheric pressure of 0.3% could be detected. In constructing a tension transducer using such a mechanical sensor as a wire or a beam, major difficulties are encountered in making an efficient clamping arrangement for the sensor. The use of dynamically clamped beams has been found to overcome the problem and this is the basis of the transducer investigated.
Resumo:
Ion implantation modifies the surface composition and properties of materials by bombardment with high energy ions. The low temperature of the process ensures the avoidance of distortion and degradation of the surface or bulk mechanical properties of components. In the present work nitrogen ion implantation at 90 keV and doses above 1017 ions/cm2 has been carried out on AISI M2, D2 and 420 steels and engineering coatings such as hard chromium, electroless Ni-P and a brush plated Co-W alloy. Evaluation of wear and frictional properties of these materials was performed with a lubricated Falex wear test at high loads up to 900 N and a dry pin-on-disc apparatus at loads up to 40 N. It was found that nitrogen implantation reduced the wear of AISI 420 stainless steel by a factor of 2.5 under high load lubricated conditions and by a factor of 5.5 in low load dry testing. Lower but significant reductions in wear were achieved for AISI M2 and D2 steels. Wear resistance of coating materials was improved by up to 4 times in lubricated wear of hard Cr coatings implanted at the optimum dose but lower improvements were obtained for the Co-W alloy coating. However, hardened electroless Ni-P coatings showed no enhancement in wear properties. The benefits obtained in wear behaviour for the above materials were generally accompanied by a significant decrease in the running-in friction. Nitrogen implantation hardened the surface of steels and Cr and Co-W coatings. An ultra-microhardness technique showed that the true hardness of implanted layers was greater than the values obtained by conventional micro-hardness methods, which often result in penetration below the implanted depth. Scanning electron microscopy revealed that implantation reduced the ploughing effect during wear and a change in wear mechanism from an abrasive-adhesive type to a mild oxidative mode was evident. Retention of nitrogen after implantation was studied by Nuclear Reaction Analysis and Auger Electron Spectroscopy. It was shown that maximum nitrogen retention occurs in hard Cr coatings and AISI 420 stainless steel, which explains the improvements obtained in wear resistance and hardness. X-ray photoelectron spectroscopy on these materials revealed that nitrogen is almost entirely bound to Cr, forming chromium nitrides. It was concluded that nitrogen implantation at 90 keV and doses above 3x1017 ions/cm2 produced the most significant improvements in mechanical properties in materials containing nitride formers by precipitation strengthening, improving the load bearing capacity of the surface and changing the wear mechanism from adhesive-abrasive to oxidative.
Resumo:
A textural and microstructural study of a variety of zinc sulfide-containing ores has been undertaken, and the possible depositional and deformational controls of textural and microstructural development considered. Samples for the study were taken from both deformed and undeformed zinc ores of the Central U.S. Appalachians, and deformed zinc ores of the English Pennines. A variety of mineralogical techniques were employed, including transmitted and reflected light microscopy of etched and unetched material, transmission electron microscopy and electron microprobe analysis. For the Pennine zinc sulfides, spectroscopic, x-ray diffraction and fluid inclusion studies were also undertaken. Optical and electron optical examination of the Appalachian material confirmed the suitability of zinc sulfide for detailed study with such techniques. Growth and deformation-related microstructures could be distinguished from specimen-preparation induced artifacts. A deformationally-mduced lamelliform optical anisotropy is seen to be developed in areas hosting a dense planar microstructure of {111} twin- and slip-planes. The Pennine zinc sulfide texturally records a changing depositional environment. Thus, for example, delicately growth- zoned crystals are truncated and cross-cut by solution disconformities. Fluid inclusion studies indicate a highly saline (20-25 wt. % equiv. NaCl), low temperature (100-150°C.) fluid. Texturally, two varieties of zinc sulfide can be recognised; a widely developed, iron- banded variety, and a paragenetically early variety, banded due to horizons rich in crystal defects and microscopic inclusions. The zinc sulfide takes the form of a disordered 3C-polytype, with much of the disorder being deformational in origin. Twin- and slip-plane fabrics are developed . A deformation-related optical anisotropy is seen to overprint growth-related anisotropy, along with cuprian alteration of certain {111} deformation planes.
Resumo:
Biofuels and chemicals from biomass mean the gasification of biogenic feedstocks and the synthesis via methanol, dimethylester (DME) or Fischer-Tropsch products. To prevent the sensitive synthesis catalysts from poisoning the syngas must be free of tar and particulates. The trace concentrations of S-, C1-, N-species, alkali and heavy metals must be of the order of a few ppb. Moreover maximum conversion efficiency will be achieved performing the gas cleaning above the synthesis conditions. The concept of an innovative dry HTHP syngas cleaning is presented. Based on the HT particle filtration and suitable sorption and catalysis processes for the relevant contaminants a total concept will be derived, which leads to a syngas quality required for synthesis catalysts in only 2 combined stages. The experimental setup for the HT gas cleaning behind the 60 kWtherm entrained flow gasifier REGA of the institute is described. Results from HT filter experiments in pilot scale are presented. The performance of 2 natural minerals for HC1 and H2S sorption is discussed with respect to the parameters temperature, surface and residence time. Results from lab scale investigations on low temperature tar catalysts' performance (commercial and proprietary development) are discussed finally.
Resumo:
We investigate the behaviour of the mutual friction force in finite temperature quantum turbulence in 4He, paying particular attention to the role of quantized vortex reconnections. Through the use of the vortex filament model, we produce three experimentally relevant types of vortex tangles in steady-state conditions, and examine through statistical analysis, how local properties of the tangle influence the mutual friction force. Finally, by monitoring reconnection events, we present evidence to indicate that vortex reconnections are the dominant mechanism for producing areas of high curvature and velocity leading to regions of high mutual friction, particularly for homogeneous and isotropic vortex tangles.
Resumo:
We have used a high-energy ball mill to prepare single-phased nanocrystalline Fe, Fe90Ni10, Fe85Al4Si11, Ni99Fe1 and Ni90Fe10 powders. We then increased their grain sizes by annealing. We found that a low-temperature anneal (T < 0.4 Tm) softens the elemental nanocrystalline Fe but hardens both the body-centered cubic iron- and face-centered cubic nickel-based solid solutions, leading in these alloys to an inverse Hall–Petch relationship. We explain this abnormal Hall–Petch effect in terms of solute segregation to the grain boundaries of the nanocrystalline alloys. Our analysis can also explain the inverse Hall–Petch relationship found in previous studies during the thermal anneal of ball-milled nanocrystalline Fe (containing ∼1.5 at.% impurities) and electrodeposited nanocrystalline Ni (containing ∼1.0 at.% impurities).