984 resultados para knowledge modeling
Resumo:
INTRODUCTION: Human pappilomavirus is one of the most common sexually transmitted diseases, and persistent HPV infection is considered the most important cause of cervical cancer. It is detected in more than 98% of this type of cancer. This study aimed to determine the level of knowledge concerning human papillomavirus among nursing college students of a private educational institution located in the City of Bauru, SP, and correlate their knowledge according to the course year. METHODS: A descriptive study with a quantitative approach, performed with a questionnaire that permitted the quantification of data and opinions, thus guaranteeing the precision of the results without distortions in analysis or interpretation. The survey was applied to randomly selected 1st, 2nd, 3rd, and 4th-year nursing college students. Twenty students from each level were selected during August 2009, totaling 80 students of both genders. RESULTS: Observation revealed that 4th-year students had greater knowledge than 1st-year students, reflecting the greater period of study, the lack of knowledge of 1st-year students was due to the low level of information acquired before entering college. CONCLUSIONS: The need for complementary studies which determine the profile and knowledge of a larger number of teenagers in relation to HPV was established. The need for educational programs that can overcome this lack of information is undeniable, especially those aimed at making adolescents less susceptible to HPV and other STDs.
Resumo:
The rapid growth of big cities has been noticed since 1950s when the majority of world population turned to live in urban areas rather than villages, seeking better job opportunities and higher quality of services and lifestyle circumstances. This demographic transition from rural to urban is expected to have a continuous increase. Governments, especially in less developed countries, are going to face more challenges in different sectors, raising the essence of understanding the spatial pattern of the growth for an effective urban planning. The study aimed to detect, analyse and model the urban growth in Greater Cairo Region (GCR) as one of the fast growing mega cities in the world using remote sensing data. Knowing the current and estimated urbanization situation in GCR will help decision makers in Egypt to adjust their plans and develop new ones. These plans should focus on resources reallocation to overcome the problems arising in the future and to achieve a sustainable development of urban areas, especially after the high percentage of illegal settlements which took place in the last decades. The study focused on a period of 30 years; from 1984 to 2014, and the major transitions to urban were modelled to predict the future scenarios in 2025. Three satellite images of different time stamps (1984, 2003 and 2014) were classified using Support Vector Machines (SVM) classifier, then the land cover changes were detected by applying a high level mapping technique. Later the results were analyzed for higher accurate estimations of the urban growth in the future in 2025 using Land Change Modeler (LCM) embedded in IDRISI software. Moreover, the spatial and temporal urban growth patterns were analyzed using statistical metrics developed in FRAGSTATS software. The study resulted in an overall classification accuracy of 96%, 97.3% and 96.3% for 1984, 2003 and 2014’s map, respectively. Between 1984 and 2003, 19 179 hectares of vegetation and 21 417 hectares of desert changed to urban, while from 2003 to 2014, the transitions to urban from both land cover classes were found to be 16 486 and 31 045 hectares, respectively. The model results indicated that 14% of the vegetation and 4% of the desert in 2014 will turn into urban in 2025, representing 16 512 and 24 687 hectares, respectively.
Resumo:
This research seeks to design and implement a WebGIS application allowing high school students to work with information related to the disciplinary competencies of the competency-teaching model, in Mexico. This paradigm assumes knowledge to be acquired through the application of new technologies and to link it with everyday life situations of students. The WebGIS provides access to maps regarding natural risks in Mexico, e.g. volcanism, seismic activities, or hurricanes; the prototype's user interface was designed with special emphasis on scholar needs for high school students.
Resumo:
The existing parking simulations, as most simulations, are intended to gain insights of a system or to make predictions. The knowledge they have provided has built up over the years, and several research works have devised detailed parking system models. This thesis work describes the use of an agent-based parking simulation in the context of a bigger parking system development. It focuses more on flexibility than on fidelity, showing the case where it is relevant for a parking simulation to consume dynamically changing GIS data from external, online sources and how to address this case. The simulation generates the parking occupancy information that sensing technologies should eventually produce and supplies it to the bigger parking system. It is built as a Java application based on the MASON toolkit and consumes GIS data from an ArcGis Server. The application context of the implemented parking simulation is a university campus with free, on-street parking places.
Resumo:
Instituto Politécnico de Lisboa (IPL) e Instituto Superior de Engenharia de Lisboa (ISEL)apoio concedido pela bolsa SPRH/PROTEC/67580/2010, que apoiou parcialmente este trabalho
Resumo:
Nowadays, the consumption of goods and services on the Internet are increasing in a constant motion. Small and Medium Enterprises (SMEs) mostly from the traditional industry sectors are usually make business in weak and fragile market sectors, where customized products and services prevail. To survive and compete in the actual markets they have to readjust their business strategies by creating new manufacturing processes and establishing new business networks through new technological approaches. In order to compete with big enterprises, these partnerships aim the sharing of resources, knowledge and strategies to boost the sector’s business consolidation through the creation of dynamic manufacturing networks. To facilitate such demand, it is proposed the development of a centralized information system, which allows enterprises to select and create dynamic manufacturing networks that would have the capability to monitor all the manufacturing process, including the assembly, packaging and distribution phases. Even the networking partners that come from the same area have multi and heterogeneous representations of the same knowledge, denoting their own view of the domain. Thus, different conceptual, semantic, and consequently, diverse lexically knowledge representations may occur in the network, causing non-transparent sharing of information and interoperability inconsistencies. The creation of a framework supported by a tool that in a flexible way would enable the identification, classification and resolution of such semantic heterogeneities is required. This tool will support the network in the semantic mapping establishments, to facilitate the various enterprises information systems integration.
Resumo:
This paper offers a new approach to estimating time-varying covariance matrices in the framework of the diagonal-vech version of the multivariate GARCH(1,1) model. Our method is numerically feasible for large-scale problems, produces positive semidefinite conditional covariance matrices, and does not impose unrealistic a priori restrictions. We provide an empirical application in the context of international stock markets, comparing the nev^ estimator with a number of existing ones.
Resumo:
A potentially renewable and sustainable source of energy is the chemical energy associated with solvation of salts. Mixing of two aqueous streams with different saline concentrations is spontaneous and releases energy. The global theoretically obtainable power from salinity gradient energy due to World’s rivers discharge into the oceans has been estimated to be within the range of 1.4-2.6 TW. Reverse electrodialysis (RED) is one of the emerging, membrane-based, technologies for harvesting the salinity gradient energy. A common RED stack is composed by alternately-arranged cation- and anion-exchange membranes, stacked between two electrodes. The compartments between the membranes are alternately fed with concentrated (e.g., sea water) and dilute (e.g., river water) saline solutions. Migration of the respective counter-ions through the membranes leads to ionic current between the electrodes, where an appropriate redox pair converts the chemical salinity gradient energy into electrical energy. Given the importance of the need for new sources of energy for power generation, the present study aims at better understanding and solving current challenges, associated with the RED stack design, fluid dynamics, ionic mass transfer and long-term RED stack performance with natural saline solutions as feedwaters. Chronopotentiometry was used to determinate diffusion boundary layer (DBL) thickness from diffusion relaxation data and the flow entrance effects on mass transfer were found to avail a power generation increase in RED stacks. Increasing the linear flow velocity also leads to a decrease of DBL thickness but on the cost of a higher pressure drop. Pressure drop inside RED stacks was successfully simulated by the developed mathematical model, in which contribution of several pressure drops, that until now have not been considered, was included. The effect of each pressure drop on the RED stack performance was identified and rationalized and guidelines for planning and/or optimization of RED stacks were derived. The design of new profiled membranes, with a chevron corrugation structure, was proposed using computational fluid dynamics (CFD) modeling. The performance of the suggested corrugation geometry was compared with the already existing ones, as well as with the use of conductive and non-conductive spacers. According to the estimations, use of chevron structures grants the highest net power density values, at the best compromise between the mass transfer coefficient and the pressure drop values. Finally, long-term experiments with natural waters were performed, during which fouling was experienced. For the first time, 2D fluorescence spectroscopy was used to monitor RED stack performance, with a dedicated focus on following fouling on ion-exchange membrane surfaces. To extract relevant information from fluorescence spectra, parallel factor analysis (PARAFAC) was performed. Moreover, the information obtained was then used to predict net power density, stack electric resistance and pressure drop by multivariate statistical models based on projection to latent structures (PLS) modeling. The use in such models of 2D fluorescence data, containing hidden, but extractable by PARAFAC, information about fouling on membrane surfaces, considerably improved the models fitting to the experimental data.
Resumo:
The aim of this work project is to find a model that is able to accurately forecast the daily Value-at-Risk for PSI-20 Index, independently of the market conditions, in order to expand empirical literature for the Portuguese stock market. Hence, two subsamples, representing more and less volatile periods, were modeled through unconditional and conditional volatility models (because it is what drives returns). All models were evaluated through Kupiec’s and Christoffersen’s tests, by comparing forecasts with actual results. Using an out-of-sample of 204 observations, it was found that a GARCH(1,1) is an accurate model for our purposes.
Resumo:
The life of humans and most living beings depend on sensation and perception for the best assessment of the surrounding world. Sensorial organs acquire a variety of stimuli that are interpreted and integrated in our brain for immediate use or stored in memory for later recall. Among the reasoning aspects, a person has to decide what to do with available information. Emotions are classifiers of collected information, assigning a personal meaning to objects, events and individuals, making part of our own identity. Emotions play a decisive role in cognitive processes as reasoning, decision and memory by assigning relevance to collected information. The access to pervasive computing devices, empowered by the ability to sense and perceive the world, provides new forms of acquiring and integrating information. But prior to data assessment on its usefulness, systems must capture and ensure that data is properly managed for diverse possible goals. Portable and wearable devices are now able to gather and store information, from the environment and from our body, using cloud based services and Internet connections. Systems limitations in handling sensorial data, compared with our sensorial capabilities constitute an identified problem. Another problem is the lack of interoperability between humans and devices, as they do not properly understand human’s emotional states and human needs. Addressing those problems is a motivation for the present research work. The mission hereby assumed is to include sensorial and physiological data into a Framework that will be able to manage collected data towards human cognitive functions, supported by a new data model. By learning from selected human functional and behavioural models and reasoning over collected data, the Framework aims at providing evaluation on a person’s emotional state, for empowering human centric applications, along with the capability of storing episodic information on a person’s life with physiologic indicators on emotional states to be used by new generation applications.
Resumo:
Organizations are undergoing serious difficulties to retain talent. Authors argue that Talent Management (TM) practices create beneficial outcomes for individuals and organizations. However, there is no research on the leaders’ role in the functioning of these practices. This study examines how LMX and role modeling influence the impact that TM practices have on employees’ trust in their organizations and retention. The analysis of two questionnaires (Nt1=175; Nt2=107) indicated that TM only reduced turnover intentions, via an increase in trust in the organization, when role modeling was high and not when it was low. Therefore, we can say that leaders are crucial in the TM context, and in sustaining a competitive advantage for organizations.
Resumo:
Introduction The aim of this study was to investigate the knowledge of toxoplasmosis among professionals and pregnant women in the public health services in Paraná, Brazil. Methods A cross-sectional observational and transversal study of 80 health professionals (44 nurses and 36 physicians) and 330 pregnant women [111 immunoglobulin M (IgM)- and IgG-non-reactive and 219 IgG-reactive] was conducted in 2010. An epidemiological data questionnaire was administered to the professionals and to the pregnant women, and a questionnaire about the clinical aspects and laboratory diagnosis of toxoplasmosis was administered to the professionals. Results The participants frequently provided correct responses about prophylactic measures. Regarding the clinical and laboratory aspects, the physicians provided more correct responses and discussed toxoplasmosis with the pregnant women. The professionals had difficulty interpreting the avidity test results, and the physicians stated that they referred pregnant women with high-risk pregnancies to a county reference center. Of the professionals, 53 (91.4%) reported that they instructed women during prenatal care, but only 54 (48.6%) at-risk pregnant women and 99 (45.2%) women who were not at risk reported receiving information about preventive measures. The physicians provided verbal instructions to 120 (78.4%) women, although instructional materials were available in the county. The pregnant women generally lacked knowledge about preventive measures for congenital toxoplasmosis, but the at-risk pregnant women tended to respond correctly. Conclusions This study provides data to direct public health policies regarding the importance of updating the knowledge of primary care professionals. Mechanisms should be developed to increase public knowledge because prophylactic strategies are important for preventing congenital toxoplasmosis.
Resumo:
Prevention plays a central role in early detection of cervical cancer. Common Sense Model proposes that the nature and organization of illness representations can guide actions related to health and how self-care is exercised. The aim of this study was to describe and compare illness perception, knowledge and self-care in women with and without cancer precursor lesions. Participants were 92 women (aged 18-59) from primary care unity divided into two groups: women with and without premalignant lesion. Measures for illness perception, knowledge and self-care were used. There was no statistically signifi cant difference (t test e chi-square test) between groups in the variables analyzed. Despite the risk for cervical cancer, women with precursor lesions do not adjust their illness perceptions, knowledge and self-care to the situation. These data show the need to warn women against the cervical cancer risks, because their distorted perceptions and lack of knowledge about the disease may hamper the screening and control of cervical cancer.
Resumo:
Introduction This study was conducted in Brazil and Colombia,where dengue is endemic and vector control programs use chemical insecticides. Methods We identified knowledge, attitudes, and practices about dengue and determined the infestation levels of Aedes aegypti in one Brazilian and four Colombian communities. Results The surveys show knowledge of the vector, but little knowledge about diagnosis, prognosis, and treatment. Vector infestation indices show Brazil to have good relative control, while Colombia presents a high transmission risk. Conclusions Given the multidimensionality of dengue control, vertical control strategies are inadequate because they deny contextualized methods, alternative solutions, and local empowerment.
Resumo:
Madine Darby Canine Kidney (MDCK) cell lines have been extensively evaluated for their potential as host cells for influenza vaccine production. Recent studies allowed the cultivation of these cells in a fully defined medium and in suspension. However, reaching high cell densities in animal cell cultures still remains a challenge. To address this shortcoming, a combined methodology allied with knowledge from systems biology was reported to study the impact of the cell environment on the flux distribution. An optimization of the medium composition was proposed for both a batch and a continuous system in order to reach higher cell densities. To obtain insight into the metabolic activity of these cells, a detailed metabolic model previously developed by Wahl A. et. al was used. The experimental data of four cultivations of MDCK suspension cells, grown under different conditions and used in this work came from the Max Planck Institute, Magdeburg, Germany. Classical metabolic flux analysis (MFA) was used to estimate the intracellular flux distribution of each cultivation and then combined with partial least squares (PLS) method to establish a link between the estimated metabolic state and the cell environment. The validation of the MFA model was made and its consistency checked. The resulted PLS model explained almost 70% of the variance present in the flux distribution. The medium optimization for the continuous system and for the batch system resulted in higher biomass growth rates than the ones obtained experimentally, 0.034 h-1 and 0.030 h-1, respectively, thus reducing in almost 10 hours the duplication time. Additionally, the optimal medium obtained for the continuous system almost did not consider pyruvate. Overall the proposed methodology seems to be effective and both proposed medium optimizations seem to be promising to reach high cell densities.