878 resultados para island methylator phenotype
Resumo:
The South Carolina Department of Natural Resources provides maps to recreational and state shellfish grounds, available to the public for recreational harvesting or to commercial harvest. This map shows the location of Distant Island Creek S117 Recreational Shellfish Ground in Beaufort County.
Resumo:
The South Carolina Department of Natural Resources provides maps to recreational and state shellfish grounds, available to the public for recreational harvesting or to commercial harvest. This map shows the location of Hutchinson Island S134 Recreational Shellfish Ground in Colleton County.
Resumo:
The South Carolina Department of Natural Resources provides maps to recreational and state shellfish grounds, available to the public for recreational harvesting or to commercial harvest. This map shows the location of Pine Island S140 Recreational Shellfish Ground in Colleton County.
Resumo:
The South Carolina Department of Natural Resources provides maps to recreational and state shellfish grounds, available to the public for recreational harvesting or to commercial harvest. This map shows the location of Snake Island S189 Recreational Shellfish Ground in Charleston County.
Resumo:
The South Carolina Department of Natural Resources provides maps to recreational and state shellfish grounds, available to the public for recreational harvesting or to commercial harvest. This map shows the location of Pine Island / Cedar Creek S241 Recreational Shellfish Ground in Charleston County.
Resumo:
The South Carolina Department of Natural Resources provides maps to recreational and state shellfish grounds, available to the public for recreational harvesting or to commercial harvest. This map shows the location of Dewees Island S258 Recreational Shellfish Ground in Charleston County.
Resumo:
The South Carolina Department of Natural Resources provides maps to recreational and state shellfish grounds, available to the public for recreational harvesting or to commercial harvest. This map shows the location of Capers Island S262 Recreational Shellfish Ground in Charleston County.
Resumo:
The South Carolina Department of Natural Resources provides maps to recreational and state shellfish grounds, available to the public for recreational harvesting or to commercial harvest. This map shows the location of Drunken Jack Island S357 Recreational Shellfish Ground in Georgetown County.
Resumo:
Tese de doutoramento, Geologia (Geoquímica), Universidade de Lisboa, Faculdade de Ciências, 2014
Resumo:
Background Entry into mitosis is regulated by cyclin dependent kinases that in turn are phosphoregulated. In most eukaryotes, phosphoregulation is through WEE1 kinase and CDC25 phosphatase. In higher plants a homologous CDC25 gene is unconfirmed and hence the mitotic inducer Schizosaccharomyces pombe (Sp) cdc25 has been used as a tool in transgenic plants to probe cell cycle function. Expression of Spcdc25 in tobacco BY-2 cells accelerates entry into mitosis and depletes cytokinins; in whole plants it stimulates lateral root production. Here we show, for the first time, that alterations to cytokinin and ethylene signaling explain the rooting phenotype elicited by Spcdc25 expression in Arabidopsis. Results Expressing Spcdc25 in Arabidopsis results in increased formation of lateral and adventitious roots, a reduction of primary root width and more isodiametric cells in the root apical meristem (RAM) compared with wild type. Furthermore it stimulates root morphogenesis from hypocotyls when cultured on two way grids of increasing auxin and cytokinin concentrations. Microarray analysis of seedling roots expressing Spcdc25 reveals that expression of 167 genes is changed by > 2-fold. As well as genes related to stress responses and defence, these include 19 genes related to transcriptional regulation and signaling. Amongst these was the up-regulation of genes associated with ethylene synthesis and signaling. Seedlings expressing Spcdc25 produced 2-fold more ethylene than WT and exhibited a significant reduction in hypocotyl length both in darkness or when exposed to 10 ppm ethylene. Furthermore in Spcdc25 expressing plants, the cytokinin receptor AHK3 was down-regulated, and endogenous levels of iPA were reduced whereas endogeous IAA concentrations in the roots increased. Conclusions We suggest that the reduction in root width and change to a more isodiametric cell phenotype in the RAM in Spcdc25 expressing plants is a response to ethylene over-production. The increased rooting phenotype in Spcdc25 expressing plants is due to an increase in the ratio of endogenous auxin to cytokinin that is known to stimulate an increased rate of lateral root production. Overall, our data reveal important cross talk between cell division and plant growth regulators leading to developmental changes.
Resumo:
Senior thesis written for Oceanography 444
Resumo:
Senior thesis written for Oceanography 445
Resumo:
Senior thesis written for Oceanography 445
Resumo:
Objective: To describe (1) the relationship between nutrition and the preterm-at-term infant phenotype, (2) phenotypic differences between preterm-at-term infants and healthy term born infants and (3) relationships between somatic and brain MRI outcomes. Design: Prospective observational study. Setting: UK tertiary neonatal unit. Participants: Preterm infants (<32 weeks gestation) (n=22) and healthy term infants (n=39) Main outcome measures: Preterm nutrient intake; total and regional adipose tissue (AT) depot volumes; brain volume and proximal cerebral arterial vessel tortuosity (CAVT) in preterm infants and in term infants. Results: Preterm nutrition was deficient in protein and high in carbohydrate and fat. Preterm nutrition was not related to AT volumes, brain volume or proximal CAVT score; a positive association was noted between human milk intake and proximal CAVT score (r=0.44, p=0.05). In comparison to term infants, preterm infants had increased total adiposity, comparable brain volumes and reduced proximal CAVT scores. There was a significant negative correlation between deep subcutaneous abdominal AT volume and brain volume in preterm infants (r=−0.58, p=0.01). Conclusions: Though there are significant phenotypic differences between preterm infants at term and term infants, preterm macronutrient intake does not appear to be a determinant. Our preliminary data suggest that (1) human milk may exert a beneficial effect on cerebral arterial vessel tortuosity and (2) there is a negative correlation between adiposity and brain volume in preterm infants at term. Further work is warranted to see if our findings can be replicated and to understand the causal mechanisms.