938 resultados para inverse probability weights
Resumo:
The production of electron–positron pairs in time-dependent electric fields (Schwinger mechanism) depends non-linearly on the applied field profile. Accordingly, the resulting momentum spectrum is extremely sensitive to small variations of the field parameters. Owing to this non-linear dependence it is so far unpredictable how to choose a field configuration such that a predetermined momentum distribution is generated. We show that quantum kinetic theory along with optimal control theory can be used to approximately solve this inverse problem for Schwinger pair production. We exemplify this by studying the superposition of a small number of harmonic components resulting in predetermined signatures in the asymptotic momentum spectrum. In the long run, our results could facilitate the observation of this yet unobserved pair production mechanism in quantum electrodynamics by providing suggestions for tailored field configurations.
Resumo:
Few studies have directly related turfgrass growth and quality responses to extractable soil P concentrations in sand greens. A 3-yr field experiment was conducted on a sand-based putting green to determine creeping bentgrass (Agrostis stolonifera L.) growth and quality responses to extractable soil P. Extractable soil P concentrations were obtained by using the modified-Morgan, Mehlich-1, and Bray-1 extractants. Critical extractable P concentrations (above which there is a low probability of response to increasing soil P concentrations) for shoot counts, thatch thickness, relative clipping yields, quality ratings, P deficiency ratings, tissue P concentrations, and root weights were determined using Cate-Nelson (CN) and quadratic response and plateau (QRP) models. Both models fit the data relatively well in most cases (R2 values from 0.12 to 0.89), and critical concentrations for the QRP models were always greater than the CN models. Critical extractable P concentrations were lowest for the modified-Morgan extractant (1.4 to 12.0 mg kg(-1)) and greatest for the Mehlich-1 extractant (14.1 to 63.6 mg kg(-1)). Application of estimated critical extractable P concentrations in this study could be used to substantiate observed responses or explain lack of responses in other previously reported creeping bentgrass P studies. We found better model fits with modified-Morgan extractable P for bentgrass quality ratings, deficiency ratings, and tissue P concentrations than with P extracted by the Mehlich or Bray methods. This suggests that the modified-Morgan extractant may have advantages over stronger-acid extractants when used on sand-based media. The results can be used to revise or update existing P fertilization recommendations for bent-grass grown on sand-based media.
Resumo:
The persistence of low birth weight and intrauterine growth retardation (IUGR) in the United States has puzzled researchers for decades. Much of the work that has been conducted on adverse birth outcomes has focused on low birth weight in general and not on IUGR. Studies that have examined IUGR specifically thus far have focused primarily on individual-level maternal risk factors. These risk factors have only been able to explain a small portion of the variance in IUGR. Therefore, recent work has begun to focus on community-level risk factors in addition to the individual-level maternal characteristics. This study uses Social Ecology to examine the relationship of individual and community-level risk factors and IUGR. Logistic regression was used to establish an individual-level model based on 155, 856 births recorded in Harris County, TX during 1999-2001. IUGR was characterized using a fetal growth ratio method with race/ethnic and sex specific mean birth weights calculated from national vital records. The spatial distributions of 114,460 birth records spatially located within the City of Houston were examined using choropleth, probability and density maps. Census tracts with higher than expected rates of IUGR and high levels of neighborhood disadvantage were highlighted. Neighborhood disadvantage was constructed using socioeconomic variables from the 2000 U.S. Census. Factor analysis was used to create a unified single measure. Lastly, a random coefficients model was used to examine the relationship between varying levels of community disadvantage, given the set of individual-level risk factors for 152,997 birth records spatially located within Harris County, TX. Neighborhood disadvantage was measured using three different indices adapted from previous work. The findings show that pregnancy-induced hypertension, previous preterm infant, tobacco use and insufficient weight gain have the highest association with IUGR. Neighborhood disadvantage only slightly further increases the risk of IUGR (OR 1.12 to 1.23). Although community level disadvantage only helped to explain a small proportion of the variance of IUGR, it did have a significant impact. This finding suggests that community level risk factors should be included in future work with IUGR and that more work needs to be conducted. ^
Resumo:
In recent years, disaster preparedness through assessment of medical and special needs persons (MSNP) has taken a center place in public eye in effect of frequent natural disasters such as hurricanes, storm surge or tsunami due to climate change and increased human activity on our planet. Statistical methods complex survey design and analysis have equally gained significance as a consequence. However, there exist many challenges still, to infer such assessments over the target population for policy level advocacy and implementation. ^ Objective. This study discusses the use of some of the statistical methods for disaster preparedness and medical needs assessment to facilitate local and state governments for its policy level decision making and logistic support to avoid any loss of life and property in future calamities. ^ Methods. In order to obtain precise and unbiased estimates for Medical Special Needs Persons (MSNP) and disaster preparedness for evacuation in Rio Grande Valley (RGV) of Texas, a stratified and cluster-randomized multi-stage sampling design was implemented. US School of Public Health, Brownsville surveyed 3088 households in three counties namely Cameron, Hidalgo, and Willacy. Multiple statistical methods were implemented and estimates were obtained taking into count probability of selection and clustering effects. Statistical methods for data analysis discussed were Multivariate Linear Regression (MLR), Survey Linear Regression (Svy-Reg), Generalized Estimation Equation (GEE) and Multilevel Mixed Models (MLM) all with and without sampling weights. ^ Results. Estimated population for RGV was 1,146,796. There were 51.5% female, 90% Hispanic, 73% married, 56% unemployed and 37% with their personal transport. 40% people attained education up to elementary school, another 42% reaching high school and only 18% went to college. Median household income is less than $15,000/year. MSNP estimated to be 44,196 (3.98%) [95% CI: 39,029; 51,123]. All statistical models are in concordance with MSNP estimates ranging from 44,000 to 48,000. MSNP estimates for statistical methods are: MLR (47,707; 95% CI: 42,462; 52,999), MLR with weights (45,882; 95% CI: 39,792; 51,972), Bootstrap Regression (47,730; 95% CI: 41,629; 53,785), GEE (47,649; 95% CI: 41,629; 53,670), GEE with weights (45,076; 95% CI: 39,029; 51,123), Svy-Reg (44,196; 95% CI: 40,004; 48,390) and MLM (46,513; 95% CI: 39,869; 53,157). ^ Conclusion. RGV is a flood zone, most susceptible to hurricanes and other natural disasters. People in the region are mostly Hispanic, under-educated with least income levels in the U.S. In case of any disaster people in large are incapacitated with only 37% have their personal transport to take care of MSNP. Local and state government’s intervention in terms of planning, preparation and support for evacuation is necessary in any such disaster to avoid loss of precious human life. ^ Key words: Complex Surveys, statistical methods, multilevel models, cluster randomized, sampling weights, raking, survey regression, generalized estimation equations (GEE), random effects, Intracluster correlation coefficient (ICC).^
Resumo:
In industrialized countries the prevalence of obesity among women decreases with increasing socioeconomic status. While this relation has been amply documented, its explanation and implications for other causal factors of obesity has received much less attention. Differences in childbearing patterns, norms and attitudes about fatness, dietary behaviors and physical activity are some of the factors that have been proposed to explain the inverse relation.^ The objectives of this investigation were to (1) examine the associations among social characteristics and weight-related attitudes and behaviors, and (2) examine the relations of these factors to weight change and obesity. Information on social characteristics, weight-related attitudes, dietary behaviors, physical activity and childbearing were collected from 304 Mexican American women aged 19 to 50 living in Starr County, Texas, who were at high risk for developing diabetes. Their weights were recorded both at an initial physical examination and at a follow-up interview one to two and one-half years later, permitting the computation of current Body Mass Index (weight/height('2)) and weight change during the interval for each subject. Path analysis was used to examine direct and indirect relations among the variables.^ The major findings were: (1) After controlling for age, childbearing was not an independent predictor of weight change or Body Mass Index. (2) Neither planned exercise nor total daily physical activity were independent predictors of weight change. (3) Women with higher social characteristics scores reported less frequent meals and less use of calorically dense foods, factors associated with lower risk for weight gain. (4) Dietary intake measures were not significantly related to Body Mass Index. However, dietary behaviors (frequency of meals and snacks, use of high and low caloric density foods, eating restraint and disinhibition of restraint) did explain a significant portion (17.4 percent) of the variance in weight change, indicating the importance of using dynamic measures of weight status in studies of the development of obesity. This study highlights factors amenable to intervention to reverse or to prevent weight gain in this population, and thereby reduce the prevalence of diabetes and its sequelae. ^
Resumo:
Geostrophic surface velocities can be derived from the gradients of the mean dynamic topography-the difference between the mean sea surface and the geoid. Therefore, independently observed mean dynamic topography data are valuable input parameters and constraints for ocean circulation models. For a successful fit to observational dynamic topography data, not only the mean dynamic topography on the particular ocean model grid is required, but also information about its inverse covariance matrix. The calculation of the mean dynamic topography from satellite-based gravity field models and altimetric sea surface height measurements, however, is not straightforward. For this purpose, we previously developed an integrated approach to combining these two different observation groups in a consistent way without using the common filter approaches (Becker et al. in J Geodyn 59(60):99-110, 2012, doi:10.1016/j.jog.2011.07.0069; Becker in Konsistente Kombination von Schwerefeld, Altimetrie und hydrographischen Daten zur Modellierung der dynamischen Ozeantopographie, 2012, http://nbn-resolving.de/nbn:de:hbz:5n-29199). Within this combination method, the full spectral range of the observations is considered. Further, it allows the direct determination of the normal equations (i.e., the inverse of the error covariance matrix) of the mean dynamic topography on arbitrary grids, which is one of the requirements for ocean data assimilation. In this paper, we report progress through selection and improved processing of altimetric data sets. We focus on the preprocessing steps of along-track altimetry data from Jason-1 and Envisat to obtain a mean sea surface profile. During this procedure, a rigorous variance propagation is accomplished, so that, for the first time, the full covariance matrix of the mean sea surface is available. The combination of the mean profile and a combined GRACE/GOCE gravity field model yields a mean dynamic topography model for the North Atlantic Ocean that is characterized by a defined set of assumptions. We show that including the geodetically derived mean dynamic topography with the full error structure in a 3D stationary inverse ocean model improves modeled oceanographic features over previous estimates.
Resumo:
reduce costs and labor associated with predicting the genotypic mean (GM) of a synthetic variety (SV) of maize (Zea mays L.), breeders can develop SVs from L lines and s single crosses (SynL,SC) instead of L+2s lines (SynL). The objective of this work was to derive and study formulae for the inbreeding coefficient (IC) and GM of SynL,SC, SynL, and the SV derived from (L+2s)/2 single crosses (SynSC). All SVs were derived from the same L+2s unrelated lines whose IC is FL, and each parent of a SV was represented by m plants. An a priori probability equation for the IC was used. Important results were: 1) the largest and smallest GMs correspond to SynL and SynL,SC, respectively; 2) the GM predictors with the largest and intermediate precision are those for SynL and SynL,SC, respectively; 3) only when FL=1, or m is large, SynL and SynSC are the same population, but only with SynSC prediction costs and labor undergo the maximum decrease, although its prediction precision is the lowest. To determine the SV to be developed, breeders should also consider the availability of lines, single crosses, manpower and land area; besides budget, target farmers, target environments, etc.
Resumo:
Coastal managers require reliable spatial data on the extent and timing of potential coastal inundation, particularly in a changing climate. Most sea level rise (SLR) vulnerability assessments are undertaken using the easily implemented bathtub approach, where areas adjacent to the sea and below a given elevation are mapped using a deterministic line dividing potentially inundated from dry areas. This method only requires elevation data usually in the form of a digital elevation model (DEM). However, inherent errors in the DEM and spatial analysis of the bathtub model propagate into the inundation mapping. The aim of this study was to assess the impacts of spatially variable and spatially correlated elevation errors in high-spatial resolution DEMs for mapping coastal inundation. Elevation errors were best modelled using regression-kriging. This geostatistical model takes the spatial correlation in elevation errors into account, which has a significant impact on analyses that include spatial interactions, such as inundation modelling. The spatial variability of elevation errors was partially explained by land cover and terrain variables. Elevation errors were simulated using sequential Gaussian simulation, a Monte Carlo probabilistic approach. 1,000 error simulations were added to the original DEM and reclassified using a hydrologically correct bathtub method. The probability of inundation to a scenario combining a 1 in 100 year storm event over a 1 m SLR was calculated by counting the proportion of times from the 1,000 simulations that a location was inundated. This probabilistic approach can be used in a risk-aversive decision making process by planning for scenarios with different probabilities of occurrence. For example, results showed that when considering a 1% probability exceedance, the inundated area was approximately 11% larger than mapped using the deterministic bathtub approach. The probabilistic approach provides visually intuitive maps that convey uncertainties inherent to spatial data and analysis.