944 resultados para intelligent agent
Resumo:
The buckling of compressively-loaded members is one of the most important factors limiting the overall strength and stability of a structure. I have developed novel techniques for using active control to wiggle a structural element in such a way that buckling is prevented. I present the results of analysis, simulation, and experimentation to show that buckling can be prevented through computer-controlled adjustment of dynamical behavior.sI have constructed a small-scale railroad-style truss bridge that contains compressive members that actively resist buckling through the use of piezo-electric actuators. I have also constructed a prototype actively controlled column in which the control forces are applied by tendons, as well as a composite steel column that incorporates piezo-ceramic actuators that are used to counteract buckling. Active control of buckling allows this composite column to support 5.6 times more load than would otherwise be possible.sThese techniques promise to lead to intelligent physical structures that are both stronger and lighter than would otherwise be possible.
Resumo:
This thesis examines the problem of an autonomous agent learning a causal world model of its environment. Previous approaches to learning causal world models have concentrated on environments that are too "easy" (deterministic finite state machines) or too "hard" (containing much hidden state). We describe a new domain --- environments with manifest causal structure --- for learning. In such environments the agent has an abundance of perceptions of its environment. Specifically, it perceives almost all the relevant information it needs to understand the environment. Many environments of interest have manifest causal structure and we show that an agent can learn the manifest aspects of these environments quickly using straightforward learning techniques. We present a new algorithm to learn a rule-based causal world model from observations in the environment. The learning algorithm includes (1) a low level rule-learning algorithm that converges on a good set of specific rules, (2) a concept learning algorithm that learns concepts by finding completely correlated perceptions, and (3) an algorithm that learns general rules. In addition this thesis examines the problem of finding a good expert from a sequence of experts. Each expert has an "error rate"; we wish to find an expert with a low error rate. However, each expert's error rate and the distribution of error rates are unknown. A new expert-finding algorithm is presented and an upper bound on the expected error rate of the expert is derived.
Resumo:
This thesis presents SodaBot, a general-purpose software agent user-environment and construction system. Its primary component is the basic software agent --- a computational framework for building agents which is essentially an agent operating system. We also present a new language for programming the basic software agent whose primitives are designed around human-level descriptions of agent activity. Via this programming language, users can easily implement a wide-range of typical software agent applications, e.g. personal on-line assistants and meeting scheduling agents. The SodaBot system has been implemented and tested, and its description comprises the bulk of this thesis.
Resumo:
This thesis presents methods for implementing robust hexpod locomotion on an autonomous robot with many sensors and actuators. The controller is based on the Subsumption Architecture and is fully distributed over approximately 1500 simple, concurrent processes. The robot, Hannibal, weighs approximately 6 pounds and is equipped with over 100 physical sensors, 19 degrees of freedom, and 8 on board computers. We investigate the following topics in depth: distributed control of a complex robot, insect-inspired locomotion control for gait generation and rough terrain mobility, and fault tolerance. The controller was implemented, debugged, and tested on Hannibal. Through a series of experiments, we examined Hannibal's gait generation, rough terrain locomotion, and fault tolerance performance. These results demonstrate that Hannibal exhibits robust, flexible, real-time locomotion over a variety of terrain and tolerates a multitude of hardware failures.
Resumo:
It is in the interests of everybody that the environment is protected. In view of the recent leaps in environmental awareness it would seem timely and sensible, therefore, for people to pool vehicle resources to minimise the damaging impact of emissions. However, this is often contrary to how complex social systems behave – local decisions made by self-interested individuals often have emergent effects that are in the interests of nobody. For software engineers a major challenge is to help facilitate individual decision-making such that individual preferences can be met, which, when accumulated, minimise adverse effects at the level of the transport system. We introduce this general problem through a concrete example based on vehicle-sharing. Firstly, we outline the kind of complex transportation problem that is directly addressed by our technology (CO2y™ - pronounced “cosy”), and also show how this differs from other more basic software solutions. The CO2y™ architecture is then briefly introduced. We outline the practical advantages of the advanced, intelligent software technology that is designed to satisfy a number of individual preference criteria and thereby find appropriate matches within a population of vehicle-share users. An example scenario of use is put forward, i.e., minimisation of grey-fleets within a medium-sized company. Here we comment on some of the underlying assumptions of the scenario, and how in a detailed real-world situation such assumptions might differ between different companies, and individual users. Finally, we summarise the paper, and conclude by outlining how the problem of pooled transportation is likely to benefit from the further application of emergent, nature-inspired computing technologies. These technologies allow systems-level behaviour to be optimised with explicit representation of individual actors. With these techniques we hope to make real progress in facing the complexity challenges that transportation problems produce.
Resumo:
Barnes, D. P., Hardy, N. W., Lee, M. H., Orgill, C. H., Sharpe, K. A. I. A software development package for intelligent supervisory systems. In Proc. ACME Res. Conf., Nottingham, September 1988, pp. 4
Resumo:
Lacey, N. J., Lee, M. H. (2003). The Epistemological Foundations of Artificial Agents. Minds and Machines, 13, 339-365.
Resumo:
Lee, M. H., Lacey, N. J. (2003). The Influence of Epistemology on the Design of Artificial Agents. Minds and Machines, 13 (3), 367-395
Resumo:
N.J. Lacey and M.H. Lee, ?The Implications of Philosophical Foundations for Knowledge Representation and Learning in Agents?, Springer-Verlag Lecture Notes on Artificial Intelligence, Vol 2636 on Adaptive Agents and Multi-Agent Systems, 2002.
Resumo:
Lacey N and Lee M.H., The Implications of Philosophical Foundations for Knowledge Representation and Learning in Agents, in Proc. AISB?01 Symposium on Adaptive Agents and Multi-agent Systems, York, March 2001, pp13-24.