983 resultados para inductively coupled plasma
Resumo:
Thermokarst lakes in the Siberian Arctic contain sediment archives that can be used for paleoenvironmental inference. Until now, however, there has been no study from the inner Lena River Delta with a focus on diatoms. The objective of this study was to investigate how the diatom community in a thermokarst lake responded to past limnogeological changes and what specific factors drove variations in the diatom assemblage. We analysed fossil diatom species, organic content, grain-size distribution and elemental composition in a sediment core retrieved in 2009 from a shallow thermokarst lake in the Arga Complex, western Lena River Delta. The core contains a 3,000-year record of sediment accumulation. Shifts in the predominantly benthic and epiphytic diatom species composition parallel changes in sediment characteristics. Paleoenvironmental and limnogeological development, inferred from multiple biological and sedimentological variables, are discussed in the context of four diatom zones, and indicate a strong relation between changes in the diatom assemblage and thermokarst processes. We conclude that limnogeological and thermokarst processes such as lake drainage, rather than direct climate forcing, were the main factors that altered the aquatic ecosystem by influencing, for example, habitat availability, hydrochemistry, and water level.
Resumo:
Strontium- and oxygen-isotopic measurements of samples recovered from the Trans-Atlantic Geotraverse (TAG) hydrothermal mound during Leg 158 of the Ocean Drilling Program provide important constraints on the nature of fluid-rock interactions during basalt alteration and mineralization within an active hydrothermal deposit. Fresh Mid-Ocean Ridge Basalt (MORB), with a 87Sr/86Sr of 0.7026, from the basement beneath the TAG mound was altered at both low and high temperatures by seawater and altered at high temperature by near end-member black smoker fluids. Pillow breccias occurring beneath the margins of the mound are locally recrystallized to chlorite by interaction with large volumes of conductively heated seawater (>200°C). The development of a silicified, sulfide-mineralized stockwork within the basaltic basement follows a simple paragenetic sequence of chloritization followed by mineralization and the development of a quartz+pyrite+paragonite stockwork cut by quartz-pyrite veins. Initial alteration involved the development of chloritic alteration halos around basalt clasts by reaction with a Mg-bearing mixture of upwelling, high-temperature (>300°C), black smoker-type fluid with a minor (<10%) proportion of seawater. Continued high-temperature (>300°C) interaction between the wallrock and these Mg-bearing fluids results in the complete recrystallization of the wallrock to chlorite+quartz+pyrite. The quartz+pyrite+paragonite assemblage replaces the chloritized basalts, and developed by reaction at 250-360°C with end-member hydrothermal fluids having 87Sr/86Sr ~0.7038, similar to present-day vent fluids. The uniformity of the 87Sr/86Sr ratios of hydrothermal assemblages throughout the mound and stockwork requires that the 87Sr/86Sr ratio of end-member hydrothermal fluids has remained relatively constant for a time period longer than that required to change the interior thermal structure and plumbing network of the mound and underlying stockwork. Precipitation of anhydrite in breccias and as late-stage veins throughout most of the mound and stockwork, down to at least 125 mbsf, records extensive entrainment of seawater into the hydrothermal deposit. 87Sr/86Sr ratios indicate that most of the anhydrite formed from ~2:1 mixture of seawater and black smoker fluids (65%±15% seawater). Oxygen-isotopic compositions imply that anhydrite precipitated at temperatures between 147°C and 270°C and require that seawater was conductively heated to between 100°C and 180°C before mixing and precipitation occurred. Anhydrite from the TAG mound has a Sr-Ca partition coefficient Kd ~0.60±0.28 (2 sigma). This value is in agreement with the range of experimentally determined partition coefficients (Kd ~0.27-0.73) and is similar to those calculated for anhydrite from active black smoker chimneys from 21°N on the East Pacific Rise. The d18O (for SO4) of TAG anhydrite brackets the value of seawater sulfate oxygen (~9.5?). Dissolution of anhydrite back into the oceans during episodes of hydrothermal quiescence provides a mechanism of buffering seawater sulfate oxygen to an isotopically light composition, in addition to the precipitation and dissolution of anhydrite within the oceanic basement during hydrothermal recharge at the mid-ocean ridges.
Major oxides, trace elements and rare earth elements of selected basalt samples at DSDP Hole 83-504B
Resumo:
DSDP Hole 504B is the deepest section drilled into oceanic basement, penetrating through a 571.5-m lava pile and a 209-m transition zone of lavas and dikes into 295 m of a sheeted dike complex. To define the basement composition 194 samples of least altered basalts, representing all lithologic units, were analyzed for their major and 26 trace elements. As is evident from the alteration-sensitive indicators H2O+, CO2, S, K, Mn, Zn, Cu, and the iron oxidation ratio, all rocks recovered are chemically altered to some extent. Downhole variation in these parameters enables us to distinguish five depth-related alteration zones that closely correlate with changes in alteration mineralogy. Alteration in the uppermost basement portion is characterized by pronounced K-uptake, sulfur loss, and iron oxidation and clearly demonstrates low-temperature seawater interaction. A very spectacular type of alteration is confined to the depth range from 910 to 1059 m below seafloor (BSF). Rocks from this basement portion exhibit the lowest iron oxidation, the highest H2O+ contents, and a considerable enrichment in Mn, S, Zn, and Cu. At the top of this zone a stockwork-like sulfide mineralization occurs. The chemical data suggest that this basement portion was at one time within a hydrothermal upflow zone. The steep gradient in alteration chemistry above this zone and the ore precipitation are interpreted as the result of mixing of the upflowing hydrothermal fluids with lower-temperature solutions circulating in the lava pile. Despite the chemical alteration the primary composition and variation of the rocks can be reliably established. All data demonstrate that the pillow lavas and the dikes are remarkably uniform and display almost the same range of variation. A general characteristic of the rocks that classify as olivine tholeiites is their high MgO contents (up to 10.5 wt.%) and their low K abundances (-200 ppm). According to their mg-values, which range from 0.60 to 0.74, most basalts appear to have undergone some high-level crystal fractionation. Despite the overall similarity in composition, there are two major basalt groups that have significantly different abundances and ratios of incompatible elements at similar mg-values. The majority of the basalts from the pillow lava and dike sections are chemically closely related, and most probably represent differentiation products of a common parental magma. They are low in Na2O, TiO2, and P2O5, and very low in the more hygromagmaphile elements. Interdigitated with this basalt group is a very rarely occurring basalt that is higher in Na2O, TiO2, P2O5, much less depleted in hygromagmaphile elements, and similar to normal mid-ocean ridge basalt (MORB). The latter is restricted to Lithologic Units 5 and 36 of the pillow lava section and Lithologic Unit 83 of the dike section. The two basalt groups cannot be related by differentiation processes but have to be regarded as products of two different parental magmas. The compositional uniformity of the majority of the basalts suggests that the magma chamber beneath the Costa Rica Rift reached nearly steady-state conditions. However, the presence of lavas and dikes that crystallized from a different parental magma requires the existence of a separate conduit-magma chamber system for these melts. Occasionally mixing between the two magma types appears to have occurred. The chemical characteristics of the two magma types imply some heterogeneity in the mantle source underlying the Costa Rica Rift. The predominant magma type represents an extremely depleted source, whereas the rare magma type presumably originated from regions of less depleted mantle material (relict or affected by metasomatism).
Resumo:
Nineteen chert samples from a continuous core of the DSDP (Leg 17, Hole 167) were analysed for Ge; in addition we analysed five samples from other cores. The ages range between Late Jurassic, and Late Eocene. The concentration of Ge changes with age from 0.87 ppm in the oldest samples to 0.23 ppm in the youngest (equivalent to a Ge/Si decrease from 0.00000072 to 0.00000019). The decrease in Ge/Si is well correlated with the 87Sr/86Sr ratio in sea water of the relevant age. The interpretation of this trend may reflect: (a) different levels of Ge/Si in sea water as a result of a different ratio between hydrothermal and riverine input, (b) a diagenetic trend in siliceous sediments, (c) recording (by radiolaria) a transition between a radiolaria dominated ocean (with relatively high Ge/Si ratios in sea water) and diatom domination or (d) a combination of the above.
Resumo:
The Os concentration and isotopic composition of metalliferous carbonates deposited on the East Pacific Rise over the past 28 Ma are reported with complimentary Sr isotope data. Variations in the Os isotopic composition of these samples are interpreted as a record of past changes in the Os isotopic composition of seawater. These results are consistent with isotopic analyses of leachable Os in pelagic clays which have also been interpreted as a record of the 187Os/186Os ratio of seawater through time (Pegram et al., 1992, doi:10.1016/0012-821X(92)90132-F). The metalliferous carbonate record clearly shows that seawater Os and Sr isotope systems are partially decoupled from one another over the past 28 Ma. Accelerated weathering of ancient organic-rich sediments is suggested as a possible mechanism to account for this decoupling and the rapid increase in the 187Os//186Os ratio of seawater over the past 15 Ma. This rapid increase suggests that the seawater Os record can potentially be used as a stratigraphic tool in some Neogene marine deposits.
Resumo:
Massive clinoptilolite authigenesis was observed at about 1105 meters below sea floor (mbsf) in lower Miocene wellcompacted carbonate periplatform sediments from the Great Bahama Bank [Ocean Drilling Program, ODP Leg 166, Site 1007]. The diagenetic assemblage comprises abundant zeolite crystallized within foraminifer tests and sedimentary matrix, as well as Mg smectites. In carbonate-rich deposits, the formation of the zeolite requires a supply of silica. Thus, the objective of the study is to determine the origin of the silica supply, its diagenetic evolution, and consequently the related implications on interpretation of the sedimentary record, in terms of local or global paleoceanographic change. For lack of evidence for any volcaniclastic input or traces of Si-enriched deep fluids circulation, an in situ biogenic source of silica is validated by isotopic data and chemical modeling for the formation of such secondary minerals in shallow-water carbonate sequences. Geochemical and strontium isotopic data clearly establish the marine signature of the diagenetic zeolite, as well as its contemporaneous formation with the carbonate deposition (Sr model ages of 19.6-23.2 Ma). The test of saturation for the pore fluids specifies the equilibrium state of the present mineralogical assemblage. Seawater-rock modeling specifies that clinoptilolite precipitates from the dissolution of biogenic silica, which reacts with clay minerals. The amount of silica (opal-A) involved in the reaction has to be significant enough, at least 10 wt.%, to account for the observed content of clinoptilolite occurring at the most zeolite-rich level. Modeling also shows that the observed amount of clinoptilolite (~19%) reflects an in situ and short-term reaction due to the high reactivity of primary biogenic silica (opal-A) until its complete depletion. The episodic occurrence of these well-lithified zeolite-rich levels is consistent with the occurrence of seismic reflectors, particularly the P2 seismic sequence boundary located at 1115 mbsf depth and dated as 23.2 Ma. The age range of most zeolitic sedimentary levels (biostratigraphic ages of 21.5-22 Ma) correlates well with that of the early Miocene glaciation Mi-1 and Mi-1a global events. Thus, the clinoptilolite occurrence in the shallow carbonate platform environment far from volcanogenic supply, or in other sensitive marine areas, is potentially a significant new proxy for paleoproductivity and oceanic global events, such as the Miocene events, which are usually recognized in deep-sea pelagic sediments and high latitude deposits.
Resumo:
Twenty-two trace elements in 355 sediment samples from Site 997 on the Blake Ridge were examined by inductively coupled plasma-optical emission spectrometry and inductively coupled plasma-mass spectrometry, for respective fractions of acid-soluble and insoluble compositions. Downhole profiles of these elements exhibit complicated fluctuations throughout late Miocene to Pleistocene, principally due to the variations in the acid-soluble fraction. Noncarbonate composition is given from the acid-insoluble residues, which permits us to recognize secular feature of selected element variance for four intervals. These intervals (I: 0-183 mbsf; II: 183- 440 mbsf; III: 440-618 mbsf; and IV: 618-750 mbsf) are interpreted to have originated from changes in the suite of sediments of particular sources and chemical composition, sedimentation rate, dilution of biogenic carbonate abundance, and possibly the current system that controlled deposition and reworking of the terrigenous materials.
Resumo:
Trace element and isotopic signatures of magmatic rock samples from ODP Hole 642E at the Vøring Plateau provide insight into the interaction processes of mantle melt with crust during the initial magma extrusion phases at the onset of the continental breakup. The intermediate (basaltic-andesitic) to felsic (dacitic and rhyolitic) Lower Series magmas at ODP Hole 642E appear to be produced by large amounts of melting of upper crustal material. This study not only makes use of the traditional geochemical tools to investigate crust-mantle interaction, but also explores the value of Cs geochemistry as an additional tool. The element Cs forms the largest lithophile cation, and shows the largest contrast in concentration between (depleted) mantle and continental crust. As such it is a very sensitive indicator of involvement of crustal material. The Cs data reinforce the conclusion drawn from isotopic signatures that the felsic magmas are largely anatectic crustal melts. The down-hole geochemical variation within ODP Hole 642E defines a decreasing continental crustal influence from the Lower Series into the Upper Series. This is essential information to distinguish intrinsic geochemical properties of the mantle melts from signatures imposed by crustal contamination. A comparison with data from the SE Greenland margin highlights the compositional asymmetry of the crust-mantle interactions at both sides of the paleo-Iapetus suture. While Lower Series and Middle Series rocks from the SE Greenland margin have isotopic signatures reflecting interactions with lower and middle crust, such signatures have not been observed at the mid-Norwegian margin. The geochemical data either point to a dissimilar Caledonian crustal composition and/or to different geodynamic pre-breakup rifting history at the two NE Atlantic margin segments.