850 resultados para hypoxia, performance, training, repeated sprint training in hypoxia, RSH


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Simultaneous measurements of pulmonary blood flow (qPA), coeliacomesenteric blood flow (qCoA), dorsal aortic blood pressure (PDA), heart rate (fH) and branchial ventilation frequency (fv) were made in the Australian lungfish, /Neoceratodus forsteri, /during air breathing and aquatic hypoxia. The cho­linergic and adrenergic influences on the cardiovascular system were investigated during normoxia using pharmacological agents, and the presence of catecholamines and serotonin in different tissues was investi­gated using histochemistry. Air breathing rarely occurred during normoxia but when it did, it was always associated with increased pulmonary blood flow. The pulmonary vasculature is influenced by both a cho­linergic and adrenergic tonus whereas the coeliacomesenteric vasculature is influenced by a β-adrenergic vasodilator mechanism. No adrenergic nerve fibers could be demonstrated in /Neoceratodus /but catecholamine-containing endothelial cells were found in the atrium of the heart. In addition, serotonin-­immunoreactive cells were demonstrated in the pulmonary epithelium. The most prominent response to aquatic hypoxia was an increase in gill breathing frequency followed by an increased number of air breaths together with increased pulmonary blood flow. It is clear from the present investigation that /Neoceratodus /is able to match cardiovascular performance to meet the changes in respiration during hypoxia.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Myocardial hypertrophy and dysfunction occur in response to excessive catecholaminergic drive. Adverse cardiac remodelling is associated with activation of proinflammatory cytokines in the myocardium. To test the hypothesis that exercise training can prevent myocardial dysfunction and production of proinflammatory cytokines induced by beta-adrenergic hyperactivity, male Wistar rats were assigned to one of the following four groups: sedentary non-treated (Con); sedentary isoprenaline treated (Iso); exercised non-treated (Ex); and exercised plus isoprenaline (Iso+Ex). Echocardiography, haemodynamic measurements and isolated papillary muscle were used for functional evaluations. Real-time RT-PCR and Western blot were used to quantify tumour necrosis factor alpha, interleukin-6, interleukin-10 and transforming growth factor beta(1) (TGF-beta(1)) in the tissue. NF-kappa B expression in the nucleus was evaluated by immunohistochemical staining. The Iso rats showed a concentric hypertrophy of the left ventricle (LV). These animals exhibited marked increases in LV end-diastolic pressure and impaired myocardial performance in vitro, with a reduction in the developed tension and maximal rate of tension increase and decrease, as well as worsened recruitment of the Frank-Starling mechanism. Both gene and protein levels of tumour necrosis factor alpha and interleukin-6, as well as TGF-beta(1) mRNA, were increased. In addition, the NF-kappa B expression in the Iso group was significantly raised. In the Iso+Ex group, the exercise training had the following effects: (1) it prevented LV hypertrophy; (ii) it improved myocardial contractility; (3) it avoided the increase of proinflammatory cytokines and improved interleukin-10 levels; and (4) it attenuated the increase of TGF-beta(1) mRNA. Thus, exercise training in a model of beta-adrenergic hyperactivity can avoid the adverse remodelling of the LV and inhibit inflammatory cytokines. Moreover, the cardioprotection is related to beneficial effects on myocardial performance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Although resistance exercise training is part of cardiovascular rehabilitation programs, little is known about its role on the cardiac and autonomic function after myocardial infarction. Objective: To evaluate the effects of resistance exercise training, started early after myocardial infarction, on cardiac function, hemodynamic profile, and autonomic modulation in rats. Methods: Male Wistar rats were divided into four groups: sedentary control, trained control, sedentary infarcted and trained infarcted rats. Each group with n = 9 rats. The animals underwent maximum load test and echocardiography at the beginning and at the end of the resistance exercise training (in an adapted ladder, 40% to 60% of the maximum load test, 3 months, 5 days/week). At the end, hemodynamic, baroreflex sensitivity and autonomic modulation assessments were made. Results: The maximum load test increased in groups trained control (+32%) and trained infarcted (+46%) in relation to groups sedentary control and sedentary infarcted. Although no change occurred regarding the myocardial infarction size and systolic function, the E/A ratio (-23%), myocardial performance index (-39%) and systolic blood pressure (+6%) improved with resistance exercise training in group trained infarcted. Concomitantly, the training provided additional benefits in the high frequency bands of the pulse interval (+45%), as well as in the low frequency band of systolic blood pressure (-46%) in rats from group trained infarcted in relation to group sedentary infarcted. Conclusion: Resistance exercise training alone may be an important and safe tool in the management of patients after myocardial infarction, considering that it does not lead to significant changes in the ventricular function, reduces the global cardiac stress, and significantly improves the vascular and cardiac autonomic modulation in infarcted rats.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Adequate supply of oxygen to the brain is critical for maintaining normal brain function. Severe hypoxia, such as that experienced during high altitude ascent, presents a unique challenge to brain oxygen (O2) supply. During high-intensity exercise, hyperventilation-induced hypocapnia leads to cerebral vasoconstriction, followed by reductions in cerebral blood flow (CBF), oxygen delivery (DO2), and tissue oxygenation. This reduced O2 supply to the brain could potentially account for the reduced performance typically observed during exercise in severe hypoxic conditions. The aims of this thesis were to document the effect of acute and chronic exposure to hypoxia on CBF control, and to determine the role of cerebral DO2 and tissue oxygenation in limiting performance during exercise in severe hypoxia. We assessed CBF, arterial O2 content (CaO2), haemoglobin concentration ([Hb]), partial pressure of arterial O2 (PaO2), cerebrovascular CO2 reactivity, ventilatory response to CO2, cerebral autoregulation (CA), and estimated cerebral DO2 (CBF ⨉ CaO2) at sea level (SL), upon ascent to 5,260 m (ALT1), and following 16 days of acclimatisation to 5,260 m (ALT16). We found an increase in CBF despite an elevated cerebrovascular CO2 reactivity at ALT1, which coincided with a reduced CA. Meanwhile, PaO2 was greatly decreased despite increased ventilatory drive at ALT1, resulting in a concomitant decrease in CaO2. At ALT16, CBF decreased towards SL values, while cerebrovascular CO2 reactivity and ventilatory drive were further elevated. Acclimatisation increased PaO2, [Hb], and therefore CaO2 at ALT16, but these changes did not improve CA compared to ALT1. No differences were observed in cerebral DO2 across SL, ALT1, and ALT16. Our findings demonstrate that cerebral DO2 is maintained during both acute and chronic exposure to 5,260 m, due to the reciprocal changes in CBF and CaO2. We measured middle cerebral artery velocity (MCAv: index of CBF), cerebral DO2, ventilation (VE), and performance during incremental cycling to exhaustion and 15km time trial cycling in both normoxia and severe hypoxia (11% O2, normobaric), with and without added CO2 to the inspirate (CO2 breathing). We found MCAv was higher during exercise in severe hypoxia compared in normoxia, while cerebral tissue oxygenation and DO2 were reduced. CO2 breathing was effective in preventing the development of hyperventilation-induced hypocapnia during intense exercise in both normoxia and hypoxia. As a result, we were able to increase both MCAv and cerebral DO2 during exercise in hypoxia with our CO2 breathing setup. However, we concomitantly increased VE and PaO2 (and presumably respiratory work) due to the increased hypercapnic stimuli with CO2 breathing, which subsequently contributed to the cerebral DO2 increase during hypoxic exercise. While we effectively restored cerebral DO2 during exercise in hypoxia to normoxic values with CO2 breathing, we did not observe any improvement in cerebral tissue oxygenation or exercise performance. Accordingly, our findings do not support the role of reduced cerebral DO2 in limiting exercise performance in severe hypoxia. -- Un apport adéquat en oxygène au niveau du cerveau est primordial pour le maintien des fonctions cérébrales normales. L'hypoxie sévère, telle qu'expérimentée au cours d'ascensions en haute altitude, présente un défi unique pour l'apport cérébral en oxygène (O2). Lors d'exercices à haute intensité, l'hypocapnie induite par l'hyperventilation entraîne une vasoconstriction cérébrale suivie par une réduction du flux sanguin cérébral (CBF), de l'apport en oxygène (DO2), ainsi que de l'oxygénation tissulaire. Cette réduction de l'apport en O2 au cerveau pourrait potentiellement être responsable de la diminution de performance observée au cours d'exercices en condition d'hypoxie sévère. Les buts de cette thèse étaient de documenter l'effet de l'exposition aiguë et chronique à l'hypoxie sur le contrôle du CBF, ainsi que de déterminer le rôle du DO2 cérébral et de l'oxygénation tissulaire comme facteurs limitant la performance lors d'exercices en hypoxie sévère. Nous avons mesuré CBF, le contenu artériel en oxygène (CaO2), la concentration en hémoglobine ([Hb]), la pression partielle artérielle en O2 (PaO2), la réactivité cérébrovasculaire au CO2, la réponse ventilatoire au CO2, et l'autorégulation cérébrale sanguine (CA), et estimé DO2 cérébral (CBF x CaO2), au niveau de la mer (SL), au premier jour à 5.260 m (ALT1) et après seize jours d'acclimatation à 5.260 m (ALT16). Nous avons trouvé des augmentations du CBF et de la réactivité cérébrovasculaire au CO2 après une ascension à 5.260 m. Ces augmentations coïncidaient avec une réduction de l'autorégulation cérébrale. Simultanément, la PaO2 était grandement réduite, malgré l'augmentation de la ventilation (VE), résultant en une diminution de la CaO2. Après seize jours d'acclimatation à 5.260 m, le CBF revenait autour des valeurs observées au niveau de la mer, alors que la réactivité cérébrovasculaire au CO2 et la VE augmentaient par rapport à ALT1. L'acclimatation augmentait la PaO2, la concentration en hémoglobine, et donc la CaO2, mais n'améliorait pas l'autorégulation cérébrale, comparé à ALT1. Aucune différence n'était observée au niveau du DO2 cérébral entre SL, ALT1 et ALT16. Nos résultats montrent que le DO2 cérébral est maintenu constant lors d'expositions aiguë et chronique à 5.260m, ce qui s'explique par la réciprocité des variations du CBF et de la CaO2. Nous avons mesuré la vitesse d'écoulement du sang dans l'artère cérébrale moyenne (MCAv : un indice du CBF), le DO2 cérébral, la VE et la performance lors d'exercice incrémentaux jusqu'à épuisement sur cycloergomètre, ainsi que des contre-la-montres de 15 km en normoxie et en hypoxie sévère (11% O2, normobarique) ; avec ajout ou non de CO2 dans le mélange gazeux inspiré. Nous avons trouvé que MCAv était plus haute pendant l'exercice hypoxique, comparé à la normoxie alors que le DO2 cérébral était réduit. L'ajout de CO2 dans le gaz inspiré était efficace pour prévenir l'hypocapnie induite par l'hyperventilation, qui se développe à l'exercice intense, à la fois en normoxie et en hypoxie. Nous avons pu augmenter MCAv et le DO2 cérébral pendant l'exercice hypoxique, grâce à l'ajout de CO2. Cependant, nous avons augmenté la VE et la PaO2 (et probablement le travail respiratoire) à cause de l'augmentation du stimulus hypercapnique. Alors que nous avons, grâce à l'ajout de CO2, efficacement restauré le DO2 cérébral au cours de l'exercice en hypoxie à des valeurs obtenues en normoxie, nous n'avons observé aucune amélioration dans l'oxygénation du tissu cérébral ou de la performance. En conséquence, nos résultats ne soutiennent pas le rôle d'un DO2 cérébral réduit comme facteur limitant de la performance en hypoxie sévère.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Despite the limited research on the effects of altitude (or hypoxic) training interventions on team-sport performance, players from all around the world engaged in these sports are now using altitude training more than ever before. In March 2013, an Altitude Training and Team Sports conference was held in Doha, Qatar, to establish a forum of research and practical insights into this rapidly growing field. A round-table meeting in which the panellists engaged in focused discussions concluded this conference. This has resulted in the present position statement, designed to highlight some key issues raised during the debates and to integrate the ideas into a shared conceptual framework. The present signposting document has been developed for use by support teams (coaches, performance scientists, physicians, strength and conditioning staff) and other professionals who have an interest in the practical application of altitude training for team sports. After more than four decades of research, there is still no consensus on the optimal strategies to elicit the best results from altitude training in a team-sport population. However, there are some recommended strategies discussed in this position statement to adopt for improving the acclimatisation process when training/competing at altitude and for potentially enhancing sea-level performance. It is our hope that this information will be intriguing, balanced and, more importantly, stimulating to the point that it promotes constructive discussion and serves as a guide for future research aimed at advancing the bourgeoning body of knowledge in the area of altitude training for team sports.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To improve our understanding of the limiting factors during repeated sprinting, we manipulated hypoxia severity during an initial set and examined the effects on performance and associated neuro-mechanical alterations during a subsequent set performed in normoxia. On separate days, 13 active males performed eight 5-s sprints (recovery = 25 s) on an instrumented treadmill in either normoxia near sea-level (SL; FiO2 = 20.9%), moderate (MH; FiO2 = 16.8%) or severe normobaric hypoxia (SH; FiO2 = 13.3%) followed, 6 min later, by four 5-s sprints (recovery = 25 s) in normoxia. Throughout the first set, along with distance covered [larger sprint decrement score in SH (-8.2%) compared to SL (-5.3%) and MH (-7.2%); P < 0.05], changes in contact time, step frequency and root mean square activity (surface electromyography) of the quadriceps (Rectus femoris muscle) in SH exceeded those in SL and MH (P < 0.05). During first sprint of the subsequent normoxic set, the distance covered (99.6, 96.4, and 98.3% of sprint 1 in SL, MH, and SH, respectively), the main kinetic (mean vertical, horizontal, and resultant forces) and kinematic (contact time and step frequency) variables as well as surface electromyogram of quadriceps and plantar flexor muscles were fully recovered, with no significant difference between conditions. Despite differing hypoxic severity levels during sprints 1-8, performance and neuro-mechanical patterns did not differ during the four sprints of the second set performed in normoxia. In summary, under the circumstances of this study (participant background, exercise-to-rest ratio, hypoxia exposure), sprint mechanical performance and neural alterations were largely influenced by the hypoxia severity in an initial set of repeated sprints. However, hypoxia had no residual effect during a subsequent set performed in normoxia. Hence, the recovery of performance and associated neuro-mechanical alterations was complete after resting for 6 min near sea level, with a similar fatigue pattern across conditions during subsequent repeated sprints in normoxia.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We assessed knee extensor neuromuscular adjustments following repeated treadmill sprints in different normobaric hypoxia conditions, with special reference to rapid muscle torque production capacity. Thirteen team- and racquet-sport athletes undertook 8 × 5-s "all-out" sprints (passive recovery = 25 s) on a non-motorized treadmill in normoxia (NM; FiO2 = 20.9%), at low (LA; FiO2 = 16.8%) and high (HA; FiO2 = 13.3%) normobaric hypoxia (simulated altitudes of ~1800 m and ~3600 m, respectively). Explosive (~1 s; "fast" instruction) and maximal (~5 s; "hard" instruction) voluntary isometric contractions (MVC) of the knee extensors (KE), with concurrent electromyographic (EMG) activity recordings of the vastus lateralis (VL) and rectus femoris (RF) muscles, were performed before and 1-min post-exercise. Rate of torque development (RTD) and EMG (i.e., Root Mean Square or RMS) rise from 0 to 30, -50, -100, and -200 ms were recorded, and were also normalized to maximal torque and EMG values, respectively. Distance covered during the first 5-s sprint was similar (P > 0.05) in all conditions. A larger (P < 0.05) sprint decrement score and a shorter (P < 0.05) cumulated distance covered over the eight sprints occurred in HA (-8 ± 4% and 178 ± 11 m) but not in LA (-7 ± 3% and 181 ± 10 m) compared to NM (-5 ± 2% and 183 ± 9 m). Compared to NM (-9 ± 7%), a larger (P < 0.05) reduction in MVC torque occurred post-exercise in HA (-14 ± 9%) but not in LA (-12 ± 7%), with no difference between NM and LA (P > 0.05). Irrespectively of condition (P > 0.05), peak RTD (-6 ± 11%; P < 0.05), and normalized peak RMS activity for VL (-8 ± 11%; P = 0.07) and RF (-14 ± 11%; P < 0.01) muscles were reduced post-exercise, whereas reductions (P < 0.05) in absolute RTD occurred within the 0-100 (-8 ± 9%) and 0-200 ms (-10 ± 8%) epochs after contraction onset. After normalization to MVC torque, there was no difference in RTD values. Additionally, the EMG rise for VL muscle was similar (P > 0.05), whereas it increased (P < 0.05) for RF muscle during all epochs post-exercise, independently of the conditions. In summary, alteration in repeated-sprint ability and post-exercise MVC decrease were greater at high altitude than in normoxia or at low altitude. However, the post-exercise alterations in RTD were similar between normoxia and low-to-high hypoxia.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the field of observational methodology the observer is obviously a central figure, and close attention should be paid to the process through which he or she acquires, applies, and maintains the skills required. Basic training in how to apply the operational definitions of categories and the rules for coding, coupled with the opportunity to use the observation instrument in real-life situations, can have a positive effect in terms of the degree of agreement achieved when one evaluates intra- and inter-observer reliability. Several authors, including Arias, Argudo, & Alonso (2009) and Medina and Delgado (1999), have put forward proposals for the process of basic and applied training in this context. Reid y De Master (1982) focuses on the observer's performance and how to maintain the acquired skills, it being argued that periodic checks are needed after initial training because an observer may, over time, become less reliable due to the inherent complexity of category systems. The purpose of this subsequent training is to maintain acceptable levels of observer reliability. Various strategies can be used to this end, including providing feedback about those categories associated with a good reliability index, or offering re-training in how to apply those that yield lower indices. The aim of this study is to develop a performance-based index that is capable of assessing an observer's ability to produce reliable observations in conjunction with other observers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Studies have shown a time-of-day of training effect on long-term explicit memory with a greater effect being shown in the afternoon than in the morning. However, these studies did not control the chronotype variable. Therefore, the purpose of this study was to assess if the time-of-day effect on explicit memory would continue if this variable were controlled, in addition to identifying the occurrence of a possible synchronic effect. A total of 68 undergraduates were classified as morning, intermediate, or afternoon types. The subjects listened to a list of 10 words during the training phase and immediately performed a recognition task, a procedure which they repeated twice. One week later, they underwent an unannounced recognition test. The target list and the distractor words were the same in all series. The subjects were allocated to two groups according to acquisition time: a morning group (N = 32), and an afternoon group (N = 36). One week later, some of the subjects in each of these groups were subjected to a test in the morning (N = 35) or in the afternoon (N = 33). The groups had similar chronotypes. Long-term explicit memory performance was not affected by test time-of-day or by chronotype. However, there was a training time-of-day effect [F (1,56) = 53.667; P = 0.009] with better performance for those who trained in the afternoon. Our data indicated that the advantage of training in the afternoon for long-term memory performance does not depend on chronotype and also that this performance is not affected by the synchronic effect.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of this study was to analyze the effect of two different high-intensity interval training (HIT) programs on selected aerobic physiological indices and 1500 and 5000 m running performance in well-trained runners. The following tests were completed (n = 17): (i) incremental treadmill test to determine maximal oxygen uptake (VO2max), running velocity associated with VO2 max (VVO2max), and the velocity corresponding to 3.5 mmol/L of blood lactate concentration (vOBLA); (ii) submaximal constant-intensity test to determine running economy (RE); and (iii) 1500 and 5000 m time trials on a 400 m track. Runners were then randomized into 95% vVO(2max) or 100% vVO(2max) groups, and undertook a 4 week training program consisting of 2 HIT sessions (performed at 95% or 100% vVO(2max), respectively) and 4 submaximal run sessions per week. Runners were retested on all parameters at the completion of the training program. The VO2 max values were not different after training for both groups. There was a significant increase in post-training vVO(2 max), RE, and 1500 in running performance in the 100% vVO(2 max) group. The vOBLA and 5000 m running performance were significantly higher after the training period for both groups. We conclude that vOBLA and 5000 m running performance can be significantly improved in well-trained runners using a 4 week training program consisting of 2 HIT sessions (performed at 95% or 100% vVO(2max)) and 4 submaximal run sessions per week. However, the improvement in vVO(2 max), RE, and 1500 in running performance seems to be dependent on the HIT program at 100% vVO(2 max).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A swimming periodized experimental training model in rats in which different training protocols (TP) were classified in aerobic (A) and anaerobic (AN) intensity levels. The purpose of the present study was to verify if the classification of the TP used in the periodized training experimental model presented the blood lactate concentration [La] response adequate to the aerobic and anaerobic intensities levels. Twenty three male Wistar rats were divided into three groups. Two groups of swimming training (continuous, CT, n = 7, and periodized training, PET, n = 7) rats were evaluated during 5 weeks in eight different TP (TP-1 to TP-8) through the analysis of the [La] response. The third group was the sedentary control (SC, n = 9). The TP were classified in five intensity levels, three aerobic (A-1, A-2, A-3) and two anaerobic (AN-1, AN-2). Analysis of variance (ANOVA one-way, P<0.05) indicated significant differences in the [La] among the TP and among the five intensity levels. All TP of the A-2 and A-3 intensity levels differed from the A-1 and AN-1. The A-1 and AN-1 also differed among them. These findings demonstrate that the TP were classified properly at different levels of aerobic and anaerobic intensities, as based on the [La] response in a way similar to that of high performance swimming with humans. The results offer new perspectives for the study of exercise training in swimming rats at different levels intensity for performance or for health.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To assess the effects of continuous exercise training at intensities corresponding to 80 and 90 % of the lactate minimum test (LM), we evaluated antioxidant activity, hormone concentration, biochemical analyses and aerobic and anaerobic performance, as well as glycogen stores, during 12 weeks of swimming training in rats. One-hundred rats were separated into three groups: control (CG, n = 40), exercise at 80 (EG80, n = 30) and 90 % (EG90, n = 30) of LM. The training lasted 12 weeks, with sessions of 60 min/day, 6 days/week. The intensity was based at 80 and 90 % of the LM. The volume did not differ between training groups (Ẋ of EG80 = 52 ± 4 min; Ẋ of EG90 = 56 ± 2 min). The glycogen concentration (mg/100 mg) in the gastrocnemius increased after the training in EG80 (0.788 ± 0.118) and EG90 (0.795 ± 0.157) in comparison to the control (0.390 ± 0.132). The glycogen stores in the soleus enhanced after the training in EG90 (0.677 ± 0.230) in comparison to the control (0.343 ± 0.142). The aerobic performance increased by 43 and 34 % for EG80 and EG90, respectively, in relation to baseline. The antioxidant enzymes remain unchanged during the training. Creatine kinase (U/L) increased after 8 weeks in both groups (EG80 = 427.2 ± 97.4; EG90 = 641.1 ± 90.2) in relation to the control (246.9 ± 66.8), and corticosterone (ng/mL) increased after 12 weeks in EG90 (539 ± 54) in comparison to the control (362 ± 44). The continuous exercise at 80 and 90 % of the LM has a marked aerobic impact on endurance performance without significantly biomarkers changes compared to control. © 2013 Springer-Verlag Berlin Heidelberg.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective The purpose of the present study was to analyze the effects of a 20-week concurrent training (20 WCT) intervention program on gender-specific body composition and metabolic variables in obese adolescents.Subjects and methods Sample was composed of twenty-five obese adolescents, aged between 12 and 15 (13.4 ± 0.96) years. Fat-free mass (FFM), percentage trunk fat mass (TFM%) and percentage fat mass (%FM) were evaluated through dual-energy X-ray absorptiometry (DXA). Measurement of intra-abdominal adiposity (IAAT) was performed using ultrasound. Blood pressure was measured and blood samples analyzed for total cholesterol (TC), high-density lipoprotein cholesterol (HDL-c), low-density lipoprotein cholesterol (LDL-c), triglycerides (TG) and plasma glucose. All participants performed the concurrent training (combination of weight training and aerobic training) three times per week, one hour per day, for 20 weeks. Descriptive analysis and analysis of variance (ANOVA) for repeated measures were used to compare baseline, 10 week and 20 week moments using the Bonferroni post-hoc test. Statistical significance was set at p < 0.05. Significant decrease in TC, LDL-c and TFM% were verified in both genders after the 10 initial weeks of concurrent training.Results A significant increase in height was found in both the male and female groups (p = 0.001 and p = 0.047, respectively), after 20 weeks of concurrent training. In addition, several modifications were observed in body composition and metabolic variables, with a significant decrease in BMI (p = 0.002 and p = 0.017), BMI z-score (p = 0.033 and p = 0.004), FM% (p = 0.002 and p = 0.002), TFM% (p = 0.009 and p = 0.018), TC (p = 0.042 and p = 0.001) and LDL-c (p = 0.006 and p = 0.001) in the male and female groups, respectively, after 20 weeks of intervention when compared with baseline.Conclusion Our results identified that concurrent training was an effective intervention for treating metabolic variable and body composition disorders, in both genders, by decreasing adiposity with consequent improvement in BMI and BMI z-scores, and enhancement in lipid profile variables.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

[EN] Leptin and osteocalcin play a role in the regulation of the fat-bone axis and may be altered by exercise. To determine whether osteocalcin reduces fat mass in humans fed ad libitum and if there is a sex dimorphism in the serum osteocalcin and leptin responses to strength training, we studied 43 male (age 23.9 2.4 yr, mean +/- SD) and 23 female physical education students (age 23.2 +/- 2.7 yr). Subjects were randomly assigned to two groups: training (TG) and control (CG). TG followed a strength combined with plyometric jumps training program during 9 wk, whereas the CG did not train. Physical fitness, body composition (dual-energy X-ray absorptiometry), and serum concentrations of hormones were determined pre- and posttraining. In the whole group of subjects (pretraining), the serum concentration of osteocalcin was positively correlated (r = 0.29-0.42, P < 0.05) with whole body and regional bone mineral content, lean mass, dynamic strength, and serum-free testosterone concentration (r = 0.32). However, osteocalcin was negatively correlated with leptin concentration (r = -0.37), fat mass (r = -0.31), and the percent body fat (r = -0.44). Both sexes experienced similar relative improvements in performance, lean mass (+4-5%), and whole body (+0.78%) and lumbar spine bone mineral content (+1.2-2%) with training. Serum osteocalcin concentration was increased after training by 45 and 27% in men and women, respectively (P < 0.05). Fat mass was not altered by training. Vastus lateralis type II MHC composition at the start of the training program predicted 25% of the osteocalcin increase after training. Serum leptin concentration was reduced with training in women. In summary, while the relative effects of strength training plus plyometric jumps in performance, muscle hypertrophy, and osteogenesis are similar in men and women, serum leptin concentration is reduced only in women. The osteocalcin response to strength training is, in part, modulated by the muscle phenotype (MHC isoform composition). Despite the increase in osteocalcin, fat mass was not reduced.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective: There is convincing evidence that phonological, orthographic and semantic processes influence children’s ability to learn to read and spell words. So far only a few studies investigated the influence of implicit learning in literacy skills. Children are sensitive to the statistics of their learning environment. By frequent reading they acquire implicit knowledge about the frequency of letter patterns in written words, and they use this knowledge during reading and spelling. Additionally, semantic connections facilitate to storing of words in memory. Thus, the aim of the intervention study was to implement a word-picture training which is based on statistical and semantic learning. Furthermore, we aimed at examining the training effects in reading and spelling in comparison to an auditory-visual matching training and a working memory training program. Participants and Methods: One hundred and thirty-two children aged between 8 and 11 years participated in training in three weekly session of 12 minutes over 8 weeks, and completed other assessments of reading, spelling, working memory and intelligence before and after training. Results: Results revealed in general that the word-picture training and the auditory-visual matching training led to substantial gains in reading and spelling performance in comparison to the working-memory training. Although both children with and without learning difficulties profited in their reading and spelling after the word-picture training, the training program led to differential effects for the two groups. After the word-picture training on the one hand, children with learning difficulties profited more in spelling as children without learning difficulties, on the other hand, children without learning difficulties benefit more in word comprehension. Conclusions: These findings highlight the need for frequent reading trainings with semantic connections in order to support the acquisition of literacy skills.