891 resultados para hydrogen maleate


Relevância:

20.00% 20.00%

Publicador:

Resumo:

To reconstruct variability of the West African monsoon and associated vegetation changes on precessional and millennial time scales, we analyzed a marine sediment core from the continental slope off Senegal spanning the past 44,000 years (44 ka). We used the stable hydrogen isotopic composition (dD) of individual terrestrial plant wax n-alkanes as a proxy for past rainfall variability. The abundance and stable carbon isotopic composition (d13C) of the same compounds were analyzed to assess changes in vegetation composition (C3/C4 plants) and density. The dD record reveals two wet periods that coincide with local maximum summer insolation from 38 to 28 ka and 15 to 4 ka and that are separated by a less wet period during minimum summer insolation. Our data indicate that rainfall intensity during the rainy season throughout both wet humid periods was similar, whereas the length of the rainy season was presumably shorter during the last glacial than during the Holocene. Additional dry intervals are identified that coincide with North Atlantic Heinrich stadials and the Younger Dryas interval, indicating that the West African monsoon over tropical northwest Africa is linked to both insolation forcing and high-latitude climate variability. The d13C record indicates that vegetation of the western Sahel was consistently dominated by C4 plants during the past 44 ka, whereas C3-type vegetation increased during the Holocene. Moreover, we observe a gradual ending of the Holocene humid period together with unchanging ratio of C3 to C4 plants, indicating that an abrupt aridification due to vegetation feedbacks is not a general characteristic of this time interval.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hydrothermal emission of mantle helium appears to be directly related to magma production rate, but other processes can generate methane and hydrogen on mid-ocean ridges. In an on-going effort to characterize these processes in the South Atlantic, the flux and distribution of these gases were investigated in the vicinity of a powerful black smoker recently discovered at 8°17.9' S, 13°30.4' W. The vent lies on the shoulder of an oblique offset in the Mid-Atlantic Ridge and discharges high concentrations of methane and hydrogen. Measurements during expeditions in 2004 and 2006 show that the ratio of CH4 to 3He in the neutrally buoyant plume is quite high, 4 x 10**8. The CTD stations were accompanied by velocity measurements with lowered acoustic Doppler current profilers (LADCP), and from these data we estimate the methane transport to have been 0.5 mol/sec in a WSW-trending plume that seems to develop during the ebb tidal phase. This transport is an order of magnitude greater than the source of CH4 calculated from its concentration in the vent fluid and the rise height of the plume. From this range of methane fluxes, the source of 3He is estimated to be between 0.14 and 1.2 nmol/sec. In either case, the 3He source is significantly lower than expected from the spreading rate of the Mid-Atlantic Ridge. From the inventory of methane in the rift valley adjacent to the vent, it appears that the average specific rate of oxidation is 2.6 to 23/yr, corresponding to a turnover time between 140 and 16 days. Vertical profiles of methane in the surrounding region often exhibited Gaussian-like distributions, and the variances appear to increase with distance from the vent. Using a Gaussian plume model, we obtained a range of vertical eddy diffusivities between 0.009 and 0.08 m2m2/sec. These high values may be due to tidally driven internal waves across the promontory on which the vent is located.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

About 100 parallel determinations of hydrogen sulfide by the volumetric and photometric methods were made in the layer of coexistence of oxygen with hydrogen sulfide (C layer). Thiosulfates were determined simultaneously. Regardless of locations of the stations, determinations by two methods coincided for the entire range of depths of occurrence of the C layer upper boundary. Within the C layer hydrogen sulfide readings obtained by these two independent methods agreed; thiosulfates were not found by direct measurements. Difference in the readings appears at the lower boundary of the C layer and below it, accompanied by appearance of thiosulfates. It is therefore concluded that it is correct to determine the upper boundary of the C layer by the iodometric method and to use concentration of hydrogen sulfide obtained by this method in the C layer to calculate rate of chemical oxidation of hydrogen sulfide in quasistationary processes.