867 resultados para hydrogen atom


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aim: To evaluate the effect of photochemical activation of hydrogen peroxide (H2O2) bleaching gel with different wavelengths. Methods: In the study, 80 bovine incisors were used, which were stained in 25% soluble coffee and divided in 4 groups. The initial color was measured with the Easy Shade spectrophotometer by CIE Lab. An experimental 35% H2O2 bleaching gel was used, either with or without the presence of titanium dioxide (TiO2) pigment, associated with two light sources: G1 - Transparent Gel (TG) and no activation; G2 - Gel with TiO2 and activation with blue LED (l=470nm)\laser (Easy Bleach) appliance; G3 - Gel with TiO2 and activation with ultraviolet (l=345nm - UV); G4 - TG and activation with UV. Three applications of the gels were made for 10 min, and in each, 3 activations of 3 min, with interval of 30 s between them. The coloration was evaluated again and the variation in color perception (DE) was calculated. The data were submitted to one-way ANOVA and Tukey's test at 5% significance level. Results: There were significant differences between G1 and G4. The greatest E value was observed in G4 (13.37). There was no statistically significant difference (p>0.05) between the groups 2, 3 and 4. Conclusions: The presence of TiO2 particules in the bleaching gel did not interfere at the bleaching results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thyroid hormone receptors (TRs) are ligand-gated transcription factors with critical roles in development and metabolism. Although x-ray structures of TR ligand-binding domains (LBDs) with agonists are available, comparable structures without ligand (apo-TR) or with antagonists are not. It remains important to understand apo-LBD conformation and the way that it rearranges with ligands to develop better TR pharmaceuticals. In this study, we conducted hydrogen/deuterium exchange on TR LBDs with or without agonist (T 3) or antagonist (NH3). Both ligands reduce deuterium incorporation into LBD amide hydrogens, implying tighter overall folding of the domain. As predicted, mass spectroscopic analysis of individual proteolytic peptides after hydrogen/ deuterium exchange reveals that ligand increases the degree of solvent protection of regions close to the buried ligand-binding pocket. However, there is also extensive ligand protection of other regions, including the dimer surface at H10-H11, providing evidence for allosteric communication between the ligand-binding pocket and distant interaction surfaces. Surprisingly, Cterminal activation helix H12, which is known to alter position with ligand, remains relatively protected from solvent in all conditions suggesting that it is packed against the LBD irrespective of the presence or type of ligand. T 3, but not NH3, increases accessibility of the upper part of H3-H5 to solvent, and we propose that TR H12 interacts with this region in apo-TR and that this interaction is blocked by T 3 but not NH3.Wepresent data from site-directed mutagenesis experiments and molecular dynamics simulations that lend support to this structural model of apo-TR and its ligand-dependent conformational changes. (Molecular Endocrinology 25: 15-31, 2011). Copyright © 2011 by The Endocrine Society.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This research aimed at studying the oxidation process, to verify the effectiveness of coliform inactivation and to evaluate the formation of ozonation disinfection byproducts (DBP) in anoxic sanitary wastewater treated with ozone/hydrogen peroxide applied at doses of 2.6 mg O3 L-1 and 2.0 mg H2O2 L-1 with contact time of 10 min and 8.1 mg O3 L-1 and 8.0 mg H2O2 L-1 with contact time of 20 min. The mean chemical oxygen demand (COD) reductions were 7.50 and 9.40% for applied dosages of 2.5-2.8 and 6.4-9.4 mg O3 L-1 + 2.0 and 8.0 mg H2O2.L-1, respectively. The Escherichia coli (E. coli) inactivation range was 2.98-4.04 log10 and the total coliform inactivation range was 2.77-4.01 log10. The aldehydes investigated were formaldehyde, acetaldehyde, glyoxal and methylglyoxal. It was observed only the formation of acetaldehyde that ranged 5.53 to 29.68 μg L-1.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report here a fully reactive molecular dynamics study on the structural and dynamical aspects of the fluorination of graphene membranes (fluorographene). Our results show that fluorination tends to produce defective areas on the graphene membranes with significant distortions of carbon-carbon bonds. Depending on the amount of incorporated fluorine atoms, large membrane holes were observed due to carbon atom losses. These results may explain the broad distribution of the structural lattice parameter values experimentally observed. We have also investigated the effects of mixing hydrogen and fluorine atoms on the graphene functionalization. Our results show that, when in small amounts, the presence of hydrogen atoms produces a significant decrease in the rate of fluorine incorporation onto the membrane. On the other hand, when fluorine is the minority element, it produces a significant catalytic effect on the rate of hydrogen incorporation. We have also observed the spontaneous formation of new hybrid structures with different stable configurations (chair-like, zigzag-like and boat-like) which we named fluorographane. © 2013 IOP Publishing Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The development of the germination process and drought stress during the drying of coffee can generate reactive oxygen species, which can be neutralized by way of antioxidant mechanisms. No studies related to antioxidant enzymes during the drying of coffee were found in the literature, and considering their importance, the enzymatic activities of superoxide dismutase (SOD), guaiacol peroxidase (GPOX) and glutathione reductase (GR), and also the hydrogen peroxide content were evaluated during the drying of two types of coffee bean, one processed as natural coffee and the other as pulped natural coffee. The results showed a reduction in the SOD, GPOX and GR enzymatic activities of the natural coffee as compared to the pulped natural coffee during the drying period. Moreover, the hydrogen peroxide content of the natural coffee was greater than that of the pulped natural coffee. These results suggest the development of oxidative stress during the coffee drying process, controlled more efficiently in pulped natural coffee by the early action of GPOX during the drying process. Nevertheless, differential responses by SOD isoenzymes and possibly the role of other peroxidases also appear to be involved in the responses observed. © 2013 Springer-Verlag Berlin Heidelberg.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hydrogen oxidation on the surfaces of the intermetallic compounds Pt 3Sn, PtSn and PtSn2 has been studied by the rotating disc electrode technique. Pt3Sn and PtSn were found to be good catalysts, about as good as Pt, while PtSn2 was inactive over the investigated range of potentials. Underpotential deposition of hydrogen is observed only on Pt3Sn. These results are explained by theoretical calculations based on a theory developed within our own group, and by density functional theory. © 2012 Elsevier B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present work, a biosensor was built with smart material based on polymer brushes. The biosensor demonstrated a pH-sensitive on-off property, and it was further used to control or modulate the electrochemical responses of the biosensor. This property could be used to realize pH-controlled electrochemical reaction of hydrogen peroxide and HRP immobilized on polymer brushes. The composite film also showed excellent amperometric i-t response toward hydrogen peroxide in the concentration range of 0-13 μM. In future, this platform might be used for self-regulating targeted diagnostic, drug delivery and biofuel cell based on controllable bioelectrocatalysis. © 2013 Elsevier B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

20% N-methylformamide (NMF) mixtures with water and with dimethylsulfoxide (DMSO) have been studied. A comparison between the hydrogen bonding (H-bond) donation of N-methylformamide with both solvents in the mixtures is presented. Results of radial distribution functions, pair distribution energies, molecular dipole moment correlation, and geometry of the H-bonded species in each case are shown. The results indicate that the NMF-solvent H-bond is significantly stronger with DMSO than with water. The solvation shell is best organized in the DMSO mixture than in the aqueous one. © 2013 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fuel cells are electrochemical energy conversion devices that convert fuel and oxidant electrochemically into electrical energy, water and heat. Compared to traditional electricity generation technologies that use combustion processes to convert fuel into heat, and then into mechanical energy, fuel cells convert the hydrogen and oxygen chemical energy into electrical energy, without intermediate conversion processes, and with higher efficiency. In order to make the fuel cells an achievable and useful technology, it is firstly necessary to develop an economic and efficient way for hydrogen production. Molecular hydrogen is always found combined with other chemical compounds in nature, so it must be isolated. In this paper, the technical, economical and ecological aspects of hydrogen production by biogas steam reforming are presented. The economic feasibility calculation was performed to evaluate how interesting the process is by analyzing the investment, operation and maintenance costs of the biogas steam reformer and the hydrogen production cost achieved the value of 0.27 US$/kWh with a payback period of 8 years. An ecological efficiency of 94.95%, which is a good ecological value, was obtained. The results obtained by these analyses showed that this type of hydrogen production is an environmentally attractive route. © 2013 Elsevier Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Multifunctional enzyme engineering can improve enzyme cocktails for emerging biofuel technology. Molecular dynamics through structure-based models (SB) is an effective tool for assessing the tridimensional arrangement of chimeric enzymes as well as for inferring the functional practicability before experimental validation. This study describes the computational design of a bifunctional xylanase-lichenase chimera (XylLich) using the xynA and bglS genes from Bacillus subtilis. In silico analysis of the average solvent accessible surface area (SAS) and the root mean square fluctuation (RMSF) predicted a fully functional chimera, with minor fluctuations and variations along the polypeptide chains. Afterwards, the chimeric enzyme was built by fusing the xynA and bglS genes. XylLich was evaluated through small-angle X-ray scattering (SAXS) experiments, resulting in scattering curves with a very accurate fit to the theoretical protein model. The chimera preserved the biochemical characteristics of the parental enzymes, with the exception of a slight variation in the temperature of operation and the catalytic efficiency (k cat/Km). The absence of substantial shifts in the catalytic mode of operation was also verified. Furthermore, the production of chimeric enzymes could be more profitable than producing a single enzyme separately, based on comparing the recombinant protein production yield and the hydrolytic activity achieved for XylLich with that of the parental enzymes. © 2013 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present work describes the photoelectrochemical hydrogen generation during a photodegradation of an organic compound. For this, it was chosen the reactive black 5 dye as a model of organic pollutant and its oxidation under TiO2 nanotube in a two compartment cell. The photoelectrocatalysis is conducted in 0.1 mol L-1 Na2SO4 pH 6 medium under photoanode biased at +1.0 V (SCE) and activated by UV and visible light using 150W Xe-Arc lamp (Oriel) and 125 W Hg lamp (Osram). The concomitant hydrogen production was monitored at cathodic compartment using a Pt cathode. Using optimized condition of Na2SO4 0.1 mol L-1 pH 6 as supporting electrolyte, applied potential of +1.0V it was verified 100% of discoloration and 72% of TOC removal of 1.0 x 10(-5) mol L-1 Reactive Black 5 dye after 120 min of treatment (rate constant of 10.6 x10(-2) min(-1)). The concomitant hydrogen generation was 44% in this condition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)