868 resultados para high carbon tool steel
Resumo:
The effect of destabilisation and subcritical heat treatment on the impact toughness, hardness, and the amount and mechanical stability of retained austenite in a low carbon white cast iron have been investigated. The experimental results show that the impact energy constantly increases when the destabilisation temperature is raised from 950 degreesC to 1200 degreesC. Although the hardness decreases, the heat-treated hardness is still greater than the as-cast state. After destabilisation treatment at 1130 degreesC, tempering at 200 to 250 degreesC for 3 hours leads to the highest impact toughness, and secondary hardening was observed when tempering over 400 degreesC. The amount of retained austenite increased with the increase in the destabilisation temperature, and the treatment significantly improves the mechanical stability of the retained austenite compared with the as-cast state. Tempering below 400 degreesC does not affect the amount of retained austenite and its mechanical stability. But the amount of retained austenite is dramatically reduced when tempered above 400 degreesC. The relationship between the mechanical properties and the microstructure changes was discussed. (C) 2001 Kluwer Academic Publishers.
Resumo:
The cost and risk associated with mineral exploration in Australia increases significantly as companies move into deeper regolith-covered terrain. The ability to map the bedrock and the depth of weathering within an area has the potential to decrease this risk and increase the effectiveness of exploration programs. This paper is the second in a trilogy concerning the Grant's Patch area of the Eastern Goldfields. The recent development of the VPmg potential field inversion program in conjunction with the acquisition of high-resolution gravity data over an area with extensive drilling provided an opportunity to evaluate three-dimensional gravity inversion as a bedrock and regolith mapping tool. An apparent density model of the study area was constructed, with the ground represented as adjoining 200 m by 200 m vertical rectangular prisms. During inversion VPmg incrementally adjusted the density of each prism until the free-air gravity response of the model replicated the observed data. For the Grant's Patch study area, this image of the apparent density values proved easier to interpret than the Bouguer gravity image. A regolith layer was introduced into the model and realistic fresh-rock densities assigned to each basement prism according to its interpreted lithology. With the basement and regolith densities fixed, the VPmg inversion algorithm adjusted the depth to fresh basement until the misfit between the calculated and observed gravity response was minimised. The resulting geometry of the bedrock/regolith contact largely replicated the base of weathering indicated by drilling with predicted depth of weathering values from gravity inversion typically within 15% of those logged during RAB and RC drilling.
Resumo:
Adsorption and diffusion in a porous media were studied theoretically and experimentally with a differential transient permeation method. The porous medium is allowed to equilibrate at some specified loading, and then the time trajectory of the permeation process is followed after a small difference between the pressures at the end faces of the porous medium is introduced at time t = 0 +. Such a trajectory us. time would contain adsorption and diffusion characteristics of the system. By studying this for various surface loadings, pore and surface diffusions can be fully characterized. Mathematical modeling of transient permeation is detailed for pure gases or vapors diffusion and adsorption in porous media. Effects of nonlinearity of adsorption isotherm, pressure, temperature and heat effects were considered in the model. Experimental data of diffusion and adsorption of propane, n-butane and n-hexane in activated carbon at different temperatures and loadings show the potential of this method as a useful tool to study adsorption kinetics in porous media. Validity of the model is best tested against the transient data where the kinetics curves exhibit sigmoidal shape, which is a result of the diffusion and adsorption rate during the initial stage of permeation.
Resumo:
In this paper, we develop a theory for diffusion and flow of pure sub-critical adsorbates in microporous activated carbon over a wide range of pressure, ranging from very low to high pressure, where capillary condensation is occurring. This theory does not require any fitting parameter. The only information needed for the prediction is the complete pore size distribution of activated carbon. The various interesting behaviors of permeability versus loading are observed such as the maximum permeability at high loading (occurred at about 0.8-0.9 relative pressure). The theory is tested with diffusion and flow of benzene through a commercial activated carbon, and the agreement is found to be very good in the light that there is no fitting parameter in the model. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
The constrained regularisation procedure was applied to compute the pore size distributions (PSDs, f(x)) for a variety of activated carbons using overall adsorption equation based on the combination of the Kelvin equation and the statistical adsorbed film thickness. The impact of the boundary values of relative nitrogen pressure p/p(0) was analysed on the basis of the corresponding alterations in the PSDs. Changes in microporosity and mesoporosity of activated carbons can be described adequately only when the range of p/p(0) is as wide as possible, as at a high initial p/p(0) value, the f(x) curves can be broadened with shifted maxima especially for micropores and narrow mesopores. Comparative analysis of the PSDs and the adsorption potential, adsorption energy and fractal dimension distributions gives useful information on the complete description of the adsorbent characteristics. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
Single-unit electrophysiology was used to record the nerve impulses from the carbon dioxide receptors of female Queensland fruit flies, Bactrocera tryoni. The receptors responded to stimulation in a phasic-tonic manner and also had a period of inhibition of the nerve impulses after the end of stimulation, at high stimulus intensities. The cell responding to carbon dioxide was presented with a range of environmental odorants and found to respond to methyl butyrate and 2-butanone. The coding characteristics of the carbon dioxide cell and the ability to detect other odorants are discussed, with particular reference to the known behavior of the fly.
Resumo:
This investigation demonstrates the capability of a bench-scale sequencing batch reactor (SBR) to biodegrade an inhibitory substrate at a high loading rate. A SBR loading rate of 3.12 kg phenol.m(-3)d(-1) (2.1 g COD.g(-1) MLVSS d(-1)) with a COD removal efficiency of 97% at a SRT of 4 days and a HRT of 10 hours was achieved; this rate was not reached before. The SBR was operated at 4 hours cycle, including 3 hours react phase. The synthetic wastewater of 1300 mg/L phenol was the sole carbon source. Oxygen uptake rates (OUR) were monitored in-situ at various stages of the SBR. The oxygen mass transfer coefficient, K(L)a, of 12.6 h(-1) was derived from respirometry. Use of respirometry in SBR aided the tracking of the soluble substrate through OUR.
Resumo:
The efficacy of psychological treatments emphasising a self-management approach to chronic pain has been demonstrated by substantial empirical research. Nevertheless, high drop-out and relapse rates and low or unsuccessful engagement in self-management pain rehabilitation programs have prompted the suggestion that people vary in their readiness to adopt a self-management approach to their pain. The Pain Stages of Change Questionnaire (PSOCQ) was developed to assess a patient's readiness to adopt a self-management approach to their chronic pain. Preliminary evidence has supported the PSOCQ's psychometric properties. The current study was designed to further examine the psychometric properties of the PSOCQ, including its reliability, factorial structure and predictive validity. A total of 107 patients with an average age of 36.2 years (SD = 10.63) attending a multi-disciplinary pain management program completed the PSOCQ, the Pain Self-Efficacy Questionnaire (PSEQ) and the West Haven-Yale Multidimensional Pain Inventory (WHYMPI) pre-admission and at discharge from the program. Initial data analysis found inadequate internal consistencies of the precontemplation and action scales of the PSOCQ and a high correlation (r = 0.66, P < 0.01) between the action and maintenance scales. Principal component analysis supported a two-factor structure: 'Contemplation' and 'Engagement'. Subsequent analyses revealed that the PSEQ was a better predictor of treatment outcome than the PSOCQ scales. Discussion centres upon the utility of the PSOCQ in a clinical pain setting in light of the above findings, and a need for further research. (C) 2002 International Association for the Study of Pain. Published by Elsevier Science B.V. All rights reserved.
Resumo:
delta(15)N signatures of fossil peat were used to interpret past ecosystem processes on tectonically active subantarctic Macquarie Island. By comparing past vegetation reconstructed from the fossil record with present-day vegetation analogues, our evidence strongly suggests that changes in the delta(15)N signatures of fossil peat at this location reflect mainly past changes in the proportion of plant nitrogen derived from animal sources. Associated with uplift above sea level over the past 8,500 years, fossil records in two peat deposits on the island chronicle a change from coastal vegetation with fur and elephant seal disturbance to the existing inland herbfield. Coupled with this change are synchronous changes in the delta(15)N signatures of peat layers. At two sites N-15-enriched peat delta(15)N signatures of up to +17parts per thousand were associated with a high abundance of pollen of the nitrophile Callitriche antarctica (Callitrichaceae). At one site fossil seal hair was also associated with enriched peat delta(15)N. Less N-15 enriched delta(15)N signatures (e.g. -1.9parts per thousand to +3.9parts per thousand) were measured in peat layers which lacked animal associated C. antarctica and Acaena spp. Interpretation of a third peat profile indicates continual occupation of a ridge site by burrowing petrels for most of the Holocene. We suggest that N-15 signatures of fossil peat remained relatively stable with time once deposited, providing a significant new tool for interpreting the palaeoecology.
Resumo:
Regulation of the expression of dimethylsulfoxide (DMSO) reductase was investigated in the purple phototrophic bacterium Rhodobacter capsulatus. Under phototrophic, anaerobic conditions with malate as carbon source, DMSO caused an approximately 150-fold induction of DMSO reductase activity. The response regulator DorR was required for DMSO-dependent induction and also appeared to slightly repress DMSO reductase expression in the absence of substrate. Likewise, when pyruvate replaced malate as carbon source there was an induction of DMSO reductase activity in cells grown at low light intensity (16 W m(-2)) and again this induction was dependent on DorR. The level of DMSO reductase activity in aerobically grown cells was elevated when pyruvate replaced malate as carbon source. One possible explanation for this is that acetyl phosphate, produced from pyruvate, may activate expression of DMSO reductase by direct phosphorylation of DorR, leading to low levels of induction of dor gene expression in the absence of DMSO. A mutant lacking the global response regulator of photosynthesis gene expression, RegA, exhibited high levels of DMSO reductase in the absence of DMSO, when grown phototrophically with malate as carbon source. This suggests that phosphorylated RegA acts as a repressor of dor operon expression under these conditions. It has been proposed elsewhere that RegA-dependent expression is negatively regulated by the cytochrome cbb(3) oxidase. A cco mutant lacking cytochrome cbb(3) exhibited significantly higher levels of Phi[dorA::lacZ] activity in the presence of DMSO compared to wild-type cells and this is consistent with the above model. Pyruvate restored DMSO reductase expression in the regA mutant to the same pattern as found in wild-type cells. These data suggest that R. capsulatus contains a regulator of DMSO respiration that is distinct from DorR and RegA, is activated in the presence of pyruvate, and acts as a negative regulator of DMSO reductase expression.
Resumo:
The effect of test temperature, which controls the stability of austenite, on the impact toughness of a low carbon Fe-Ni-Mn-C austenitic steel and 304 stainless steel, has been investigated. Under impact conditions, stress-induced martensitic transformation occurred, in a region near the fracture surface, at test temperatures below 80degreesC for the Fe-Ni-Mn-C steel and below -25degreesC for 304 stainless steel. The former shows significant transformation toughening and the highest impact toughness was obtained at 10degreesC, which corresponds to the maximum amount of martensite formed by stress-induced transformation above the Ms temperature. The stress-induced martensitic transformation contributes negatively to the impact toughness in the 304 stainless steel. Increasing the amount of stress-induced transformation to martensite, lowered the impact toughness. The experimental results can be well explained by the Antolovich theory through the analysis of metallography and fractography. The different effect of stress-induced transformation on the impact toughness in Fe-Ni-Mn-C steel and 304 stainless steel has been further understood by applying the crystallographic model for stress-induced martensitic transformation to these two steels. (C) 2002 Kluwer Academic Publishers.
Resumo:
Structural and surface property changes of macadamia nut-shell (MNS) char upon activation and high temperature treatment (HTT) were studied by high-resolution nitrogen adsorption, diffuse reflectance infra-red Fourier transform spectroscopy, X-ray photoelectron spectroscopy, and temperature-programmed desorption. It is found that activation of MNS char can be divided into the low extent activation which may involve the reactions of internal oxygen-containing groups and leads to the formation of comparatively uniform micropores, and the high extent activation which induces reactions between carbon and activating gas and produces a large amount of micropores. The surface functional groups (SFGs) basically increase with the increase of activation extent, but high extent activation preferentially increases the amount of -C-O and -C=O. HTT in air for a short tithe at a high temperature (1173 K) greatly increases the micropore volume and the amounts of SFGs. By appropriately choosing the activation and HTT conditions, it is possible to control both the textural structure and the type and amounts of SFG. (C) 2002 Published by Elsevier Science Ltd.
Resumo:
An important feature of improving lattice gas models and classical isotherms is the incorporation of a pore size dependent capacity, which has hitherto been overlooked. In this paper, we develop a model for predicting the temperature dependent variation in capacity with pore size. The model is based on the analysis of a lattice gas model using a density functional theory approach at the close packed limit. Fluid-fluid and solid-fluid interactions are modeled by the Lennard-Jones 12-6 potential and Steele's 10-4-3, potential respectively. The capacity of methane in a slit-shaped carbon pore is calculated from the characteristic parameters of the unit cell, which are extracted by minimizing the grand potential of the unit cell. The capacities predicted by the proposed model are in good agreement with those obtained from grand canonical Monte Carlo simulation, for pores that can accommodate up to three adsorbed layers. Single particle and pair distributions exhibit characteristic features that correspond to the sequence of buckling and rhombic transitions that occur as the slit pore width is increased. The model provides a useful tool to model continuous variation in the microstructure of an adsorbed phase, namely buckling and rhombic transitions, with increasing pore width. (C) 2002 American Institute of Physics.
Resumo:
A thermodynamic approach based on the Bender equation of state is suggested for the analysis of supercritical gas adsorption on activated carbons at high pressure. The approach accounts for the equality of the chemical potential in the adsorbed phase and that in the corresponding bulk phase and the distribution of elements of the adsorption volume (EAV) over the potential energy for gas-solid interaction. This scheme is extended to subcritical fluid adsorption and takes into account the phase transition in EAV The method is adapted to gravimetric measurements of mass excess adsorption and has been applied to the adsorption of argon, nitrogen, methane, ethane, carbon dioxide, and helium on activated carbon Norit R I in the temperature range from 25 to 70 C. The distribution function of adsorption volume elements over potentials exhibits overlapping peaks and is consistently reproduced for different gases. It was found that the distribution function changes weakly with temperature, which was confirmed by its comparison with the distribution function obtained by the same method using nitrogen adsorption isotherm at 77 K. It was shown that parameters such as pore volume and skeleton density can be determined directly from adsorption measurements, while the conventional approach of helium expansion at room temperature can lead to erroneous results due to the adsorption of helium in small pores of activated carbon. The approach is a convenient tool for analysis and correlation of excess adsorption isotherms over a wide range of pressure and temperature. This approach can be readily extended to the analysis of multicomponent adsorption systems. (C) 2002 Elsevier Science (USA).
Resumo:
A theoretical analysis of adsorption of mixtures containing subcritical adsorbates into activated carbon is presented as an extension to the theory for pure component developed earlier by Do and coworkers. In this theory, adsorption of mixtures in a pore follows a two-stage process, similar to that for pure component systems. The first stage is the layering of molecules on the surface, with the behavior of the second and higher layers resembling to that of vapor-liquid equilibrium. The second stage is the pore-filling process when the remaining pore width is small enough and the pressure is high enough to promote the pore filling with liquid mixture having the same compositions as those of the outermost molecular layer just prior to pore filling. The Kelvin equation is applied for mixtures, with the vapor pressure term being replaced by the equilibrium pressure at the compositions of the outermost layer of the liquid film. Simulations are detailed to illustrate the effects of various parameters, and the theory is tested with a number of experimental data on mixture. The predictions were very satisfactory.