986 resultados para group A streptococcus
Resumo:
We investigate the group velocity of the probe light pulse in an open V-type system with spontaneously generated coherence. We find that, not only varying the relative phase between the probe and driving pulses can but varying the atomic exit rate or incoherent pumping rate also can manipulate dramatically the group velocity, even make the pulse propagation switching from subluminal to superluminal; the subliminal propagation can be companied with gain or absorption, but the superluminal propagation is always companied with absorption. (c) 2006 Elsevier GmbH. All rights reserved.
Resumo:
This thesis is a theoretical work on the space-time dynamic behavior of a nuclear reactor without feedback. Diffusion theory with G-energy groups is used.
In the first part the accuracy of the point kinetics (lumped-parameter description) model is examined. The fundamental approximation of this model is the splitting of the neutron density into a product of a known function of space and an unknown function of time; then the properties of the system can be averaged in space through the use of appropriate weighting functions; as a result a set of ordinary differential equations is obtained for the description of time behavior. It is clear that changes of the shape of the neutron-density distribution due to space-dependent perturbations are neglected. This results to an error in the eigenvalues and it is to this error that bounds are derived. This is done by using the method of weighted residuals to reduce the original eigenvalue problem to that of a real asymmetric matrix. Then Gershgorin-type theorems .are used to find discs in the complex plane in which the eigenvalues are contained. The radii of the discs depend on the perturbation in a simple manner.
In the second part the effect of delayed neutrons on the eigenvalues of the group-diffusion operator is examined. The delayed neutrons cause a shifting of the prompt-neutron eigenvalue s and the appearance of the delayed eigenvalues. Using a simple perturbation method this shifting is calculated and the delayed eigenvalues are predicted with good accuracy.
Resumo:
Experimental studies were conducted with the goals of 1) determining the origin of Pt- group element (PGE) alloys and associated mineral assemblages in refractory inclusions from meteorites and 2) developing a new ultrasensitive method for the in situ chemical and isotopic analysis of PGE. A general review of the geochemistry and cosmochemistry of the PGE is given, and specific research contributions are presented within the context of this broad framework.
An important step toward understanding the cosmochemistry of the PGE is the determination of the origin of POE-rich metallic phases (most commonly εRu-Fe) that are found in Ca, AJ-rich refractory inclusions (CAI) in C3V meteorites. These metals occur along with γNi-Fe metals, Ni-Fe sulfides and Fe oxides in multiphase opaque assemblages. Laboratory experiments were used to show that the mineral assemblages and textures observed in opaque assemblages could be produced by sulfidation and oxidation of once homogeneous Ni-Fe-PGE metals. Phase equilibria, partitioning and diffusion kinetics were studied in the Ni-Fe-Ru system in order to quantify the conditions of opaque assemblage formation. Phase boundaries and tie lines in the Ni-Fe-Ru system were determined at 1273, 1073 and 873K using an experimental technique that allowed the investigation of a large portion of the Ni-Fe-Ru system with a single experiment at each temperature by establishing a concentration gradient within which local equilibrium between coexisting phases was maintained. A wide miscibility gap was found to be present at each temperature, separating a hexagonal close-packed εRu-Fe phase from a face-centered cubic γNi-Fe phase. Phase equilibria determined here for the Ni-Fe-Ru system, and phase equilibria from the literature for the Ni-Fe-S and Ni-Fe-O systems, were compared with analyses of minerals from opaque assemblages to estimate the temperature and chemical conditions of opaque assemblage formation. It was determined that opaque assemblages equilibrated at a temperature of ~770K, a sulfur fugacity 10 times higher than an equilibrium solar gas, and an oxygen fugacity 106 times higher than an equilibrium solar gas.
Diffusion rates between -γNi-Fe and εRu-Fe metal play a critical role in determining the time (with respect to CAI petrogenesis) and duration of the opaque assemblage equilibration process. The diffusion coefficient for Ru in Ni (DRuNi) was determined as an analog for the Ni-Fe-Ru system by the thin-film diffusion method in the temperature range of 1073 to 1673K and is given by the expression:
DRuNi (cm2 sec-1) = 5.0(±0.7) x 10-3 exp(-2.3(±0.1) x 1012 erg mole-1/RT) where R is the gas constant and T is the temperature in K. Based on the rates of dissolution and exsolution of metallic phases in the Ni-Fe-Ru system it is suggested that opaque assemblages equilibrated after the melting and crystallization of host CAI during a metamorphic event of ≥ 103 years duration. It is inferred that opaque assemblages originated as immiscible metallic liquid droplets in the CAI silicate liquid. The bulk compositions of PGE in these precursor alloys reflects an early stage of condensation from the solar nebula and the partitioning of V between the precursor alloys and CAI silicate liquid reflects the reducing nebular conditions under which CAI were melted. The individual mineral phases now observed in opaque assemblages do not preserve an independent history prior to CAI melting and crystallization, but instead provide important information on the post-accretionary history of C3V meteorites and allow the quantification of the temperature, sulfur fugacity and oxygen fugacity of cooling planetary environments. This contrasts with previous models that called upon the formation of opaque assemblages by aggregation of phases that formed independently under highly variable conditions in the solar nebula prior to the crystallization of CAI.
Analytical studies were carried out on PGE-rich phases from meteorites and the products of synthetic experiments using traditional electron microprobe x-ray analytical techniques. The concentrations of PGE in common minerals from meteorites and terrestrial rocks are far below the ~100 ppm detection limit of the electron microprobe. This has limited the scope of analytical studies to the very few cases where PGE are unusually enriched. To study the distribution of PGE in common minerals will require an in situ analytical technique with much lower detection limits than any methods currently in use. To overcome this limitation, resonance ionization of sputtered atoms was investigated for use as an ultrasensitive in situ analytical technique for the analysis of PGE. The mass spectrometric analysis of Os and Re was investigated using a pulsed primary Ar+ ion beam to provide sputtered atoms for resonance ionization mass spectrometry. An ionization scheme for Os that utilizes three resonant energy levels (including an autoionizing energy level) was investigated and found to have superior sensitivity and selectivity compared to nonresonant and one and two energy level resonant ionization schemes. An elemental selectivity for Os over Re of ≥ 103 was demonstrated. It was found that detuning the ionizing laser from the autoionizing energy level to an arbitrary region in the ionization continuum resulted in a five-fold decrease in signal intensity and a ten-fold decrease in elemental selectivity. Osmium concentrations in synthetic metals and iron meteorites were measured to demonstrate the analytical capabilities of the technique. A linear correlation between Os+ signal intensity and the known Os concentration was observed over a range of nearly 104 in Os concentration with an accuracy of ~ ±10%, a millimum detection limit of 7 parts per billion atomic, and a useful yield of 1%. Resonance ionization of sputtered atoms samples the dominant neutral-fraction of sputtered atoms and utilizes multiphoton resonance ionization to achieve high sensitivity and to eliminate atomic and molecular interferences. Matrix effects should be small compared to secondary ion mass spectrometry because ionization occurs in the gas phase and is largely independent of the physical properties of the matrix material. Resonance ionization of sputtered atoms can be applied to in situ chemical analysis of most high ionization potential elements (including all of the PGE) in a wide range of natural and synthetic materials. The high useful yield and elemental selectivity of this method should eventually allow the in situ measurement of Os isotope ratios in some natural samples and in sample extracts enriched in PGE by fire assay fusion.
Phase equilibria and diffusion experiments have provided the basis for a reinterpretation of the origin of opaque assemblages in CAI and have yielded quantitative information on conditions in the primitive solar nebula and cooling planetary environments. Development of the method of resonance ionization of sputtered atoms for the analysis of Os has shown that this technique has wide applications in geochemistry and will for the first time allow in situ studies of the distribution of PGE at the low concentration levels at which they occur in common minerals.
Resumo:
The effects of the relative phase between two laser beams on the propagation of a weak electromagnetic pulse are investigated in a V-type system with spontaneously generated coherence (SGC). Due to the relative phase, the subluminal and superluminal group velocity can be unified. Meanwhile, SGC can be regarded as a knob to manipulate light propagation between subluminal and superluminal.
Resumo:
With the external field coupling the two upper levels, we investigate the light pulse propagation properties with weak probe field in a V-type system. Due to the external upper level (UL) coupling field, the dispersion of the system has been influenced by the relative phase. It is shown that the UL field and the relative phase can be regarded as switches to manipulate light propagation between subluminal and superluminal. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
The properties of a five-level K-type system are investigated. With the controlling fields, the properties of the dispersion and absorption of the system are changed greatly. The system can produce anomalous dispersion regions with absorption and normal dispersion regions with absorption or transparency. Furthermore, the group velocity can be varied from subluminal to superluminal by varying the intensity of the controlling field and the probe detunings in principle. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Zirconocene aldehyde and ketone complexes were synthesized in high yield by treatment of zirconocene acyl complexes with trimethylaluminum or diisobutylaluminum hydride. These complexes, which are activated by dialkylaluminum chloride ligands, inserted unsaturated substrates such as alkynes, allenes, ethylene, nitriles, ketenes, aldehydes, ketones, lactones, and acid chlorides with moderate to high conversion. Insertion of aldehyde substrates yielded zirconocene diolate complexes with up to 20:1 (anti:syn) diastereoselectivity. The zirconocene diolates were hydrolyzed to afford unsymmetrical 1,2-diols in 40-80% isolated yield. Unsymmetrical ketones gave similar insertion yields with little or no diastereoselectivity. A high yielding one-pot method was developed that coupled carbonyl substrates with zirconocene aldehyde complexes that were derived from olefins by hydrozirconation and carbonylation. The zirconocene aldehyde complexes also inserted carbon monoxide and gave acyloins in 50% yield after hydrolysis.
The insertion reaction of aryl epoxides with the trimethylphoshine adduct of titanocene methylidene was examined. The resulting oxytitanacyclopentanes were carbonylated and oxidatively cleaved with dioxygen to afford y-lactones in moderate yields. Due to the instability and difficult isolation of titanocene methylidene trimethylphoshine adducts, a one-pot method involving the addition of catalytic amounts of trimethylphosphine to β,β-dimethyltitanacyclobutane was developed. A series of disubstituted aryl epoxides were examined which gave mixtures of diastereomeric insertion products. Based on these results, as well as earlier Hammett studies and labeling experiments, a biradical transition state intermediate is proposed. The method is limited to aryl substituted epoxide substrates with aliphatic examples showing no insertion reactivity.
The third study involved the use of magnesium chloride supported titanium catalysts for the Lewis acid catalyzed silyl group transfer condensation of enol silanes with aldehydes. The reaction resulted in silylated aldol products with as many as 140 catalytic turnovers before catalyst inactivation. Low diastereoselectivities favoring the anti-isomer were consistent with an open transition state involving a titanium atom bound to the catalyst surface. The catalysts were also used for the aldol group transfer polymerization of t-butyldimethylsilyloxy-1-ethene resulting in polymers with molecular weights of 5000-31,000 and molar mass dispersities of 1.5-2.8. Attempts to polymerize methylmethacrylate using GTP proved unsuccessful with these catalysts.
Resumo:
Network information theory and channels with memory are two important but difficult frontiers of information theory. In this two-parted dissertation, we study these two areas, each comprising one part. For the first area we study the so-called entropy vectors via finite group theory, and the network codes constructed from finite groups. In particular, we identify the smallest finite group that violates the Ingleton inequality, an inequality respected by all linear network codes, but not satisfied by all entropy vectors. Based on the analysis of this group we generalize it to several families of Ingleton-violating groups, which may be used to design good network codes. Regarding that aspect, we study the network codes constructed with finite groups, and especially show that linear network codes are embedded in the group network codes constructed with these Ingleton-violating families. Furthermore, such codes are strictly more powerful than linear network codes, as they are able to violate the Ingleton inequality while linear network codes cannot. For the second area, we study the impact of memory to the channel capacity through a novel communication system: the energy harvesting channel. Different from traditional communication systems, the transmitter of an energy harvesting channel is powered by an exogenous energy harvesting device and a finite-sized battery. As a consequence, each time the system can only transmit a symbol whose energy consumption is no more than the energy currently available. This new type of power supply introduces an unprecedented input constraint for the channel, which is random, instantaneous, and has memory. Furthermore, naturally, the energy harvesting process is observed causally at the transmitter, but no such information is provided to the receiver. Both of these features pose great challenges for the analysis of the channel capacity. In this work we use techniques from channels with side information, and finite state channels, to obtain lower and upper bounds of the energy harvesting channel. In particular, we study the stationarity and ergodicity conditions of a surrogate channel to compute and optimize the achievable rates for the original channel. In addition, for practical code design of the system we study the pairwise error probabilities of the input sequences.
Resumo:
Este estudo tem como propósito analisar a eficácia de diferentes formulações de antissépticos bucais presentes no mercado brasileiro sobre um monobiofilme de Streptococcus mutans (ATCC 25175). O experimento foi realizado expondo as amostras às formulações por 1 minuto. Os biofilmes foram desenvolvidos semeando as cepas em tubos de ensaio contendo meio de cultura TSB acrescido de 1% de sacarose por 7 dias, com trocas de meio a cada 48 horas. A amostra foi dividida em grupos: monobiofilme tratado com solução contendo clorexidina (controle positivo); monobiofilme tratado com solução contendo óleos essenciais; monobiofilme tratado com solução contendo triclosan; biofilme tratado com solução contendo triclosan acrescido de cloreto de zinco; monobiofilme tratado com solução contendo cloreto de cetilpiridínio; monobiofilme tratado com solução salina fisiológica estéril (controle negativo). Para a análise do efeito pós antibiotico, as cepas foram removidas e plaqueadas imediatamente após a exposição e após 2 horas de crescimento em meio TSB. A média do crescimento bacteriano foi convertida em unidades formadoras de colônia (UFC) para análise. Para analizar a capacidade de recolonização as cepas foram inoculadas em TSB acrescido de sacarose por 48hs. os valores submetidos à análise estatística pelo teste t-student e ANOVA com modificação de Tukey e Dunnett. Os resultados nos permitem concluir que: todos os grupos tratados com antissépticos apresentaram redução das concentrações de microrganismos viáveis em relação ao controle negativo, nos dois tempos analizados. As formulações contendo triclosan e óleos essenciais não apresentaram diferença nem relação ao controle positivo e nem entre eles mesmos, também nos dois tempos. As formulações de antissépticos, contendo clorexidina, óleos essenciais, triclosan podem alterar a capacidade de recolonização do monobiofilme, neste modelo.
Resumo:
The effect of group delay ripple of chirped fiber gratings on composite second-order (CSO) performance in optical fiber CATV system is investigated. We analyze the system CSO performances for different ripple amplitudes, periods and residual dispersion amounts in detail. It is found that the large ripple amplitude and small ripple period will deteriorate the system CSO performance seriously. Additionally, the residual dispersion amount has considerable effect on CSO performance in the case of small ripple amplitude and large ripple period. (c) 2004 Elsevier B.V. All rights reserved.
Resumo:
I. Crossing transformations constitute a group of permutations under which the scattering amplitude is invariant. Using Mandelstem's analyticity, we decompose the amplitude into irreducible representations of this group. The usual quantum numbers, such as isospin or SU(3), are "crossing-invariant". Thus no higher symmetry is generated by crossing itself. However, elimination of certain quantum numbers in intermediate states is not crossing-invariant, and higher symmetries have to be introduced to make it possible. The current literature on exchange degeneracy is a manifestation of this statement. To exemplify application of our analysis, we show how, starting with SU(3) invariance, one can use crossing and the absence of exotic channels to derive the quark-model picture of the tensor nonet. No detailed dynamical input is used.
II. A dispersion relation calculation of the real parts of forward π±p and K±p scattering amplitudes is carried out under the assumption of constant total cross sections in the Serpukhov energy range. Comparison with existing experimental results as well as predictions for future high energy experiments are presented and discussed. Electromagnetic effects are found to be too small to account for the expected difference between the π-p and π+p total cross sections at higher energies.
Resumo:
This report to the Thames Water Authority and Central Water Planning Unit is on research carried out in conjunction with the Stage 1 Group Pumping Test of five boreholes in the upper Lambourn Group for a period of three months in September, October and November 1975. The aim of the study was to assess the ecological effects of the pumpin g of five bore-holes in the upper Lambourn. That is, to determine how the seasonal sequence of ecological events in the river differed from what would hav e occurred had no pumping taken place. Since this 'experiment' has no control it is not possible to make a direct assessment. Nevertheless, by careful monitoring of ecological events before, during and after the pumping it is possible to document changes in th e river and by reference to the data already available for the Rive r Lambourn, normal seasonal changes in the flora and fauna can be separated from changes which may be attributable to the pumping and subsequent events.
Resumo:
Photovoltaic energy conversion represents a economically viable technology for realizing collection of the largest energy resource known to the Earth -- the sun. Energy conversion efficiency is the most leveraging factor in the price of energy derived from this process. This thesis focuses on two routes for high efficiency, low cost devices: first, to use Group IV semiconductor alloy wire array bottom cells and epitaxially grown Group III-V compound semiconductor alloy top cells in a tandem configuration, and second, GaP growth on planar Si for heterojunction and tandem cell applications.
Metal catalyzed vapor-liquid-solid grown microwire arrays are an intriguing alternative for wafer-free Si and SiGe materials which can be removed as flexible membranes. Selected area Cu-catalyzed vapor-liquid solid growth of SiGe microwires is achieved using chlorosilane and chlorogermane precursors. The composition can be tuned up to 12% Ge with a simultaneous decrease in the growth rate from 7 to 1 μm/min-1. Significant changes to the morphology were observed, including tapering and faceting on the sidewalls and along the lengths of the wires. Characterization of axial and radial cross sections with transmission electron microscopy revealed no evidence of defects at facet corners and edges, and the tapering is shown to be due to in-situ removal of catalyst material during growth. X-ray diffraction and transmission electron microscopy reveal a Ge-rich crystal at the tip of the wires, strongly suggesting that the Ge incorporation is limited by the crystallization rate.
Tandem Ga1-xInxP/Si microwire array solar cells are a route towards a high efficiency, low cost, flexible, wafer-free solar technology. Realizing tandem Group III-V compound semiconductor/Si wire array devices requires optimization of materials growth and device performance. GaP and Ga1-xInxP layers were grown heteroepitaxially with metalorganic chemical vapor deposition on Si microwire array substrates. The layer morphology and crystalline quality have been studied with scanning electron microscopy and transmission electron microscopy, and they provide a baseline for the growth and characterization of a full device stack. Ultimately, the complexity of the substrates and the prevalence of defects resulted in material without detectable photoluminescence, unsuitable for optoelectronic applications.
Coupled full-field optical and device physics simulations of a Ga0.51In0.49P/Si wire array tandem are used to predict device performance. A 500 nm thick, highly doped "buffer" layer between the bottom cell and tunnel junction is assumed to harbor a high density of lattice mismatch and heteroepitaxial defects. Under simulated AM1.5G illumination, the device structure explored in this work has a simulated efficiency of 23.84% with realistic top cell SRH lifetimes and surface recombination velocities. The relative insensitivity to surface recombination is likely due to optical generation further away from the free surfaces and interfaces of the device structure.
Finally, GaP has been grown free of antiphase domains on Si (112) oriented substrates using metalorganic chemical vapor deposition. Low temperature pulsed nucleation is followed by high temperature continuous growth, yielding smooth, specular thin films. Atomic force microscopy topography mapping showed very smooth surfaces (4-6 Å RMS roughness) with small depressions in the surface. Thin films (~ 50 nm) were pseudomorphic, as confirmed by high resolution x-ray diffraction reciprocal space mapping, and 200 nm thick films showed full relaxation. Transmission electron microscopy showed no evidence of antiphase domain formation, but there is a population of microtwin and stacking fault defects.