999 resultados para genetic exclusion
Resumo:
To analyze the genetic relatedness and phylogeographic structure of Aedes aegypti, we collected samples from 36 localities throughout the Americas (Brazil, Peru, Venezuela, Guatemala, US), three from Africa (Guinea, Senegal, Uganda), and three from Asia (Singapore, Cambodia, Tahiti). Amplification and sequencing of a fragment of the mitochondrial NADH dehydrogenase subunit 4 gene identified 20 distinct haplotypes, of which 14 are exclusive to the Americas, four to African/Asian countries, one is common to the Americas and Africa, and one to the Americas and Asia. Nested clade analysis (NCA), pairwise distribution, statistical parsimony, and maximum parsimony analyses were used to infer evolutionary and historic processes, and to estimate phylogenetic relationships among haplotypes. Two clusters were found in all the analyses. Haplotypes clustered in the two clades were separated by eight mutational steps. Phylogeographic structure detected by the NCA was consistent with distant colonization within one clade and fragmentation followed by range expansion via long distance dispersal in the other. Three percent of nucleotide divergence between these two clades is suggestive of a gene pool division that may support the hypothesis of occurrence of two subspecies of Ae. aegypti in the Americas.
Resumo:
Aspergillus flavus is a very important toxigenic fungus that produces aflatoxins, a group of extremely toxic substances to man and animals. Toxigenic fungi can grow in feed crops, such as maize, peanuts, and soybeans, being thus of high concern for public health. There are toxigenic and non-toxigenic A. flavus variants, but the necessary conditions for expressing the toxigenic potential are not fully understood. Therefore, we have studied total-DNA polymorphism from toxigenic and non toxigenic A. flavus strains isolated from maize crops and soil at two geographic locations, 300 km apart, in the Southeast region of Brazil. Total DNA from each A. flavus isolate was extracted and subjected to polymerase chain reaction amplification with five randomic primers through the RAPD (random amplified polymorphic DNA) technique. Phenetic and cladistic analyses of the data, based on bootstrap analyses, led us to conclude that RAPD was not suitable to discriminate toxigenic from non toxigenic strains. But the present results support the use of RAPD for strain characterization, especially for preliminary evaluation over extensive collections.
Resumo:
Machado-Joseph disease or spinocerebellar ataxia type 3, the most common dominantly-inherited spinocerebellar ataxia, results from translation of the polyglutamine-expanded and aggregation prone ataxin 3 protein. Clinical manifestations include cerebellar ataxia and pyramidal signs and there is no therapy to delay disease progression. Beclin 1, an autophagy-related protein and essential gene for cell survival, is decreased in several neurodegenerative disorders. This study aimed at evaluating if lentiviral-mediated beclin 1 overexpression would rescue motor and neuropathological impairments when administered to pre- and post-symptomatic lentiviral-based and transgenic mouse models of Machado-Joseph disease. Beclin 1-mediated significant improvements in motor coordination, balance and gait with beclin 1-treated mice equilibrating longer periods in the Rotarod and presenting longer and narrower footprints. Furthermore, in agreement with the improvements observed in motor function beclin 1 overexpression prevented neuronal dysfunction and neurodegeneration, decreasing formation of polyglutamine-expanded aggregates, preserving Purkinje cell arborization and immunoreactivity for neuronal markers. These data show that overexpression of beclin 1 in the mouse cerebellum is able to rescue and hinder the progression of motor deficits when administered to pre- and post-symptomatic stages of the disease.
Resumo:
The present work is a thorough investigation of the degree of reproductive isolation between Meccus mazzottii and Meccus longipennis, Meccus picturatus, Meccus pallidipennis and Meccus bassolsae, as well as between M. longipennis and M. picturatus. We examined fertility and segregation of morphological characteristics in two generations of hybrids derived from crosses between these species. The percentage of pairs with (fertile) offspring was highest in the set of crosses between M. longipennis and M. picturatus, and lowest between M. mazzottii and M. picturatus. Most first-generation (F1) individuals from crosses involving M. mazzottii were morphologically similar to this species, while only F1 x F1 progeny of parental crosses between M. mazzottii and M. longipennis had offspring second generation that looked like M. mazzottii. The results indicate that different degrees of reproductive isolation apparently exist among the species of the Phyllosoma complex examined in this study. The biological evidence obtained in this study does not support the proposal that M. longipennis and M. picturatus are full species. It could indicate on the contrary, that both could be considered as subspecies of a single polytypic species. On the other hand, biological evidence supports the proposal that M. mazzottii is a full species.
Resumo:
Molecular characterization of Paracoccidioides brasiliensis variant strains that had been preserved under mineral oil for decades was carried out by random amplified polymorphic DNA analysis (RAPD). On P. brasiliensis variants in the transitional phase and strains with typical morphology, RAPD produced reproducible polymorphic amplification products that differentiated them. A dendrogram based on the generated RAPD patterns placed the 14 P. brasiliensis strains into five groups with similarity coefficients of 72%. A high correlation between the genotypic and phenotypic characteristics of the strains was observed. A 750 bp-RAPD fragment found only in the wild-type phenotype strains was cloned and sequenced. Genetic similarity analysis using BLASTx suggested that this RAPD marker represents a putative domain of a hypothetical flavin-binding monooxygenase (FMO)-like protein of Neurospora crassa.
Resumo:
The bacterial strain Bacillus cereus is closely related to Bacillus thuringiensis, although any genetic relationship between the two strains is still in debate. Using rep-PCR genomic fingerprinting, we established the genetic relationships between Brazilian sympatric populations of B. cereus and B. thuringiensis simultaneously collected from two geographically separate sites. We observed the formation of both B. thuringiensis and B. cereus clusters, as well as strains of B. cereus that are more closely related to B. thuringiensis than to other B. cereus strains. In addition, lower genetic variability was observed among B. thuringiensis clusters compared to B. cereus clusters, indicating that either the two species should be categorized as separate or that B. thuringiensis may represent a clone from a B. cereus background.
Resumo:
Sequence variation among different hepatitis C virus (HCV) isolates has adaptive significance and reflects the modes and intensities of selection mechanisms operating on the virus. In this work, we sought to investigate using classical population genetics parameters, the genetic variability of HCV genotype 1 using the 5' UTR and NS5A regions from treatment non-responding and responding groups of patients. Both regions showed low genetic varia-bility and the 5' UTR showed neutral deviation. No differences were observed in the nonsynonymous/synonymous nucleotide substitution ratio among groups for NS5A. The analysis of molecular variance test of the 5' UTR region showed an 11.94% variation among groups. Phylogenetic analysis showed no correlation between sequence variations and therapeutic responses.
Resumo:
The sandfly Lutzomyia longipalpis s.l. is the main vector of American Visceral Leishmaniasis. L. longipalpis s.l. is a species complex but until recently the existence of cryptic sibling species among Brazilian populations was a controversial issue. A fragment of paralytic (para), a voltage dependent sodium channel gene associated with insecticide resistance and courtship song production in Drosophila, was isolated and used as a molecular marker to study the divergence between two sympatric siblings of the L. longipalpis complex from Sobral, Brazil. The results revealed para as the first single locus DNA marker presenting fixed differences between the two species in this locality. In addition, two low frequency amino-acid changes in an otherwise very conserved region of the channel were observed, raising the possibility that it might be associated with incipient resistance in this vector. To the best of our knowledge, the present study represents the first population genetics analysis of insecticide resistance genes in this important leishmaniasis vector.
Resumo:
The mTOR (mammalian target of rapamycin) signal transduction pathway integrates various signals, regulating ribosome biogenesis and protein synthesis as a function of available energy and amino acids, and assuring an appropriate coupling of cellular proliferation with increases in cell size. In addition, recent evidence has pointed to an interplay between the mTOR and p53 pathways. We investigated the genetic variability of 67 key genes in the mTOR pathway and in genes of the p53 pathway which interact with mTOR. We tested the association of 1,084 tagging SNPs with prostate cancer risk in a study of 815 prostate cancer cases and 1,266 controls nested within the European Prospective Investigation into Cancer and Nutrition (EPIC). We chose the SNPs (n = 11) with the strongest association with risk (p<0.01) and sought to replicate their association in an additional series of 838 prostate cancer cases and 943 controls from EPIC. In the joint analysis of first and second phase two SNPs of the PRKCI gene showed an association with risk of prostate cancer (ORallele = 0.85, 95% CI 0.78–0.94, p = 1.3×10−3 for rs546950 and ORallele = 0.84, 95% CI 0.76–0.93, p = 5.6×10−4 for rs4955720). We confirmed this in a meta-analysis using as replication set the data from the second phase of our study jointly with the first phase of the Cancer Genetic Markers of Susceptibility (CGEMS) project. In conclusion, we found an association with prostate cancer risk for two SNPs belonging to PRKCI, a gene which is frequently overexpressed in various neoplasms, including prostate cancer.
Resumo:
Analysing human genetic variation provides a powerful tool in understanding risk factors for disease. Toxoplasma gondii acquired by the mother can be transmitted to the fetus. Infants with the most severe clinical signs in brain and eye are those infected early in pregnancy when fetal immunity is least well developed. Genetic analysis could provide unique insight into events in utero that are otherwise difficult to determine. We tested the hypothesis that propensity for T. gondii to cause eye disease is associated with genes previously implicated in congenital or juvenile onset ocular disease. Using mother-child pairs from Europe (EMSCOT) and child/parent trios from North America (NCCCTS), we demonstrated that ocular and brain disease in congenital toxoplasmosis associate with polymorphisms in ABCA4 encoding ATP-binding cassette transporter, subfamily A, member 4 previously associated with juvenile onset retinal dystrophies including Stargardt's disease. Polymorphisms at COL2A1 encoding type II collagen, previously associated with Stickler syndrome, associated only with ocular disease in congenital toxoplasmosis. Experimental studies showed that both ABCA4 and COL2A1 show isoform-specific epigenetic modifications consistent with imprinting, which provided an explanation for the patterns of inheritance observed. These genetic and epigenetic risk factors provide unique insight into molecular pathways in the pathogenesis of disease.
Resumo:
BACKGROUND: Decreasing exposure to airborne particulates was previously associated with reduced age-related decline in lung function. However, whether the benefit from improved air quality depends on genetic background is not known. Recent evidence points to the involvement of the genes p53 and p21 and of the cell cycle control gene cyclin D1 (CCND1) in the response of bronchial cells to air pollution. OBJECTIVE: We determined in 4,326 participants of the Swiss Cohort Study on Air Pollution and Lung and Heart Diseases in Adults (SAPALDIA) whether four single-nucleotide polymorphisms in three genes [CCND1 (rs9344 [P242P], rs667515), p53 (rs1042522 [R72P]), and p21 (rs1801270 [S31R])] modified the previously observed attenuation of the decline in the forced expiratory flow between 25% and 75% of the forced vital capacity (FEF(25-75)) associated with improved air quality. METHODS: Subjects of the prospective population-based SAPALDIA cohort were assessed in 1991 and 2002 by spirometry, questionnaires, and biological sample collection for genotyping. We assigned spatially resolved concentrations of particulate matter with aerodynamic diameter < or = 10 microm (PM(10)) to each participant's residential history 12 months before the baseline and follow-up assessments. RESULTS: The effect of diminishing PM(10) exposure on FEF(25-75) decline appeared to be modified by p53 R72P, CCND1 P242P, and CCND1 rs667515. For example, a 10-microg/m(3) decline in average PM(10) exposure over an 11-year period attenuated the average annual decline in FEF(25-75) by 21.33 mL/year (95% confidence interval, 10.57-32.08) among participants homozygous for the CCND1 (P242P) GG genotype, by 13.72 mL/year (5.38-22.06) among GA genotypes, and by 6.00 mL/year (-4.54 to 16.54) among AA genotypes. CONCLUSIONS: Our results suggest that cell cycle control genes may modify the degree to which improved air quality may benefit respiratory function in adults.