991 resultados para genetic base
Resumo:
- The resource constrained project scheduling problem (RCPSP) is a difficult problem in combinatorial optimization for which extensive investigation has been devoted to the development of efficient algorithms. During the last couple of years many heuristic procedures have been developed for this problem, but still these procedures often fail in finding near-optimal solutions. This paper proposes a genetic algorithm for the resource constrained project scheduling problem. The chromosome representation of the problem is based on random keys. The schedule is constructed using a heuristic priority rule in which the priorities and delay times of the activities are defined by the genetic algorithm. The approach was tested on a set of standard problems taken from the literature and compared with other approaches. The computational results validate the effectiveness of the proposed algorithm
Resumo:
The reaction of 2,6-diformyl-4-methylphenol with 1,3-bis(3-aminopropyl)tetramethyldisiloxane in the presence of MnCl2 in a 1:1:2 molar ratio in methanol afforded a dinuclear -chlorido-bridged manganese(II) complex of the macrocyclic [2+2] condensation product (H2L), namely, [Mn2Cl2(H2L)(HL)]Cl center dot 3H(2)O (1). The latter afforded a new compound, namely, [Mn2Cl2(H2L)(2)][MnCl4]center dot 4CH(3)CN center dot 0.5CHCl(3 center dot)0.4H(2)O (2), after recrystallisation from 1:1 CHCl3/CH3CN. The co-existence of the free and complexed azomethine groups, phenolato donors, mu-chlorido bridges, and the disiloxane unit were well evidenced by ESI mass spectrometry and FTIR spectroscopy and confirmed by X-ray crystallography. The magnetic measurements revealed an antiferromagnetic interaction between the two high-spin (S = 5/2, g = 2) manganese(II) ions through the mu-chlorido bridging ligands. The electrochemical behaviour of 1 and 2 has been studied, and details of their redox properties are reported. Both compounds act as catalysts or catalyst precursors in the solvent-free low-power microwave-assisted oxidation of selected secondary alcohols, for example, 1-phenylethanol, cyclohexanol, 2- and 3-octanol, to the corresponding ketones in the absence of solvent. The highest yield of 72% was achieved for 1-phenylethanol by using a maximum of 1% molar ratio of catalyst relative to substrate.
Resumo:
This study addresses the optimization of fractional algorithms for the discrete-time control of linear and non-linear systems. The paper starts by analyzing the fundamentals of fractional control systems and genetic algorithms. In a second phase the paper evaluates the problem in an optimization perspective. The results demonstrate the feasibility of the evolutionary strategy and the adaptability to distinct types of systems.
Resumo:
This paper presents a biased random-key genetic algorithm for the resource constrained project scheduling problem. The chromosome representation of the problem is based on random keys. Active schedules are constructed using a priority-rule heuristic in which the priorities of the activities are defined by the genetic algorithm. A forward-backward improvement procedure is applied to all solutions. The chromosomes supplied by the genetic algorithm are adjusted to reflect the solutions obtained by the improvement procedure. The heuristic is tested on a set of standard problems taken from the literature and compared with other approaches. The computational results validate the effectiveness of the proposed algorithm.
Resumo:
This paper presents a methodology for applying scheduling algorithms using Monte Carlo simulation. The methodology is based on a decision support system (DSS). The proposed methodology combines a genetic algorithm with a new local search using Monte Carlo Method. The methodology is applied to the job shop scheduling problem (JSSP). The JSSP is a difficult problem in combinatorial optimization for which extensive investigation has been devoted to the development of efficient algorithms. The methodology is tested on a set of standard instances taken from the literature and compared with others. The computation results validate the effectiveness of the proposed methodology. The DSS developed can be utilized in a common industrial or construction environment.
Resumo:
This study addresses the optimization of rational fraction approximations for the discrete-time calculation of fractional derivatives. The article starts by analyzing the standard techniques based on Taylor series and Padé expansions. In a second phase the paper re-evaluates the problem in an optimization perspective by tacking advantage of the flexibility of the genetic algorithms.
Resumo:
This paper presents a genetic algorithm for the multimode resource-constrained project scheduling problem (MRCPSP), in which multiple execution modes are available for each of the activities of the project. The objective function is the minimization of the construction project completion time. To solve the problem, is applied a two-level genetic algorithm, which makes use of two separate levels and extend the parameterized schedule generation scheme by introducing an improvement procedure. It is evaluated the quality of the schedule and present detailed comparative computational results for the MRCPSP, which reveal that this approach is a competitive algorithm.
Resumo:
Dissertação apresentada como requisito parcial para obtenção do grau de Mestre em Ciência e Sistemas de Informação Geográfica
Resumo:
The Brazilian National Regulatory Agency for Private Health Insurance and Plans has recently published a technical note defining the criteria for the coverage of genetic testing to diagnose hereditary cancer. In this study we show the case of a patient with a breast lesion and an extensive history of cancer referred to a private service of genetic counseling. The patient met both criteria for hereditary breast and colorectal cancer syndrome screening. Her private insurance denied coverage for genetic testing because she lacks current or previous cancer diagnosis. After she appealed by lawsuit, the court was favorable and the test was performed using next-generation sequencing. A deletion of MLH1 exon 8 was found. We highlight the importance to offer genetic testing using multigene analysis for noncancer patients.
Resumo:
Genetic Algorithms (GAs) are adaptive heuristic search algorithm based on the evolutionary ideas of natural selection and genetic. The basic concept of GAs is designed to simulate processes in natural system necessary for evolution, specifically those that follow the principles first laid down by Charles Darwin of survival of the fittest. On the other hand, Particle swarm optimization (PSO) is a population based stochastic optimization technique inspired by social behavior of bird flocking or fish schooling. PSO shares many similarities with evolutionary computation techniques such as GAs. The system is initialized with a population of random solutions and searches for optima by updating generations. However, unlike GA, PSO has no evolution operators such as crossover and mutation. In PSO, the potential solutions, called particles, fly through the problem space by following the current optimum particles. PSO is attractive because there are few parameters to adjust. This paper presents hybridization between a GA algorithm and a PSO algorithm (crossing the two algorithms). The resulting algorithm is applied to the synthesis of combinational logic circuits. With this combination is possible to take advantage of the best features of each particular algorithm.
Resumo:
Several phenomena present in electrical systems motivated the development of comprehensive models based on the theory of fractional calculus (FC). Bearing these ideas in mind, in this work are applied the FC concepts to define, and to evaluate, the electrical potential of fractional order, based in a genetic algorithm optimization scheme. The feasibility and the convergence of the proposed method are evaluated.
Resumo:
This paper addresses the calculation of derivatives of fractional order for non-smooth data. The noise is avoided by adopting an optimization formulation using genetic algorithms (GA). Given the flexibility of the evolutionary schemes, a hierarchical GA composed by a series of two GAs, each one with a distinct fitness function, is established.
Resumo:
This paper presents a genetic algorithm for the Resource Constrained Project Scheduling Problem (RCPSP). The chromosome representation of the problem is based on random keys. The schedule is constructed using a heuristic priority rule in which the priorities of the activities are defined by the genetic algorithm. The heuristic generates parameterized active schedules. The approach was tested on a set of standard problems taken from the literature and compared with other approaches. The computational results validate the effectiveness of the proposed algorithm.
Resumo:
Até 2020, a Europa terá de reduzir 20% das suas emissões de gases com efeito de estufa, 20% da produção de energia terá de ser proveniente de fontes renováveis e a eficiência energética deverá aumentar 20%. Estas são as metas apresentadas pela União Europeia, que ficaram conhecidas por 20/20/20 [1]. A Refinaria de Matosinhosé um complexo industrial que opera no sector da refinação e que apresenta preocupações ao nível da eficiência energética e dos aspectos ambientais subjacentes. No âmbito da racionalização energética das refinarias, a Galp Energia tem vindo a implementar um conjunto de medidas, adoptando as melhores tecnologias disponíveis com o objectivo de diminuir os consumos de energia, promover a eficiência energética e reduzir as emissões de dióxido de carbono. Para ir de encontro a estas medidas foi elaborado um estudo comparativo que permitiu à empresa definir as medidas consideradas prioritárias. Uma solução encontrada visa a execução de projectos que não requerem investimento e que têm acções imediatas, tais como o aumento da eficiência energética das fornalhas [1]. Este trabalho realizado na Galp Energia S.A. teve como objectivo principal a optimização energética da Unidade de Desalfatação do Propano da Fábrica de Óleos Base. Esta optimização baseou-se no aproveitamento energético da corrente de fundo da coluna de rectificação T2003C com uma potência calorífica de 2,79 Gcal/h. Após levantamento de todas as variáveis do processo relativas a esta unidade, especialmente a potência calorífica das correntes envolvidas chegou-se á conclusão que a fornalha H2101 poderá ser substituída por dois permutadores, reduzindo desta forma os consumos energéticos. Pois a corrente de fundo da coluna T2003 com uma potência calorífica 2,79 Gcal/h poderá permutar calor com a corrente da mistura asfalto com propano, fazendo com que esta atinja temperatura superior à obtida com a fornalha em funcionamento. A análise económica ao consumo e respectivo custo do fuelóleo na fornalha para o período de um ano foi realizada, sendo o seu custo de combustível de 611.396,00 €. O valor da aquisição dos permutadores é 86.355,97€, sendo rentável a alteração proposta neste projecto.
Resumo:
Os mercados de energia elétrica são atualmente uma realidade um pouco por todo o mundo. Contudo, não é consensual o modelo regulatório a utilizar, o que origina a utilização de diferentes modelos nos diversos países que deram início ao processo de liberalização e de reestruturação do sector elétrico. A esses países, dado que a energia elétrica não é um bem armazenável, pelo menos em grandes quantidades, colocam-se questões importantes relacionadas com a gestão propriamente dita do seu sistema elétrico. Essas questões implicam a adoção de regras impostas pelo regulador que permitam ultrapassar essas questões. Este trabalho apresenta um estudo feito aos mercados de energia elétrica existentes um pouco por todo o mundo e que o autor considerou serem os mais importantes. Foi também feito um estudo de ferramentas de otimização essencialmente baseado em meta-heurísticas aplicadas a problemas relacionados com a operação dos mercados e com os sistemas elétricos de energia, como é o exemplo da resolução do problema do Despacho Económico. Foi desenvolvida uma aplicação que simula o funcionamento de um mercado que atua com o modelo Pool Simétrico, em que são transmitidas as ofertas de venda e compra de energia elétrica por parte dos produtores, por um lado, e dos comercializadores, consumidores elegíveis ou intermediários financeiros, por outro, analisando a viabilidade técnica do Despacho Provisório. A análise da viabilidade técnica do Despacho Provisório é verificada através do modelo DC de trânsito de potências. No caso da inviabilidade do Despacho Provisório, por violação de restrições afetas ao problema, são determinadas medidas corretivas a esse despacho, com base nas ofertas realizadas e recorrendo a um Despacho Ótimo. Para a determinação do Despacho Ótimo recorreu-se à meta-heurística Algoritmos Genéticos. A aplicação foi desenvolvida no software MATLAB utilizando a ferramenta Graphical User Interfaces. A rede de teste utilizada foi a rede de 14 barramentos do Institute of Electrical and Electronics Engineers (IEEE). A aplicação mostra-se competente no que concerne à simulação de um mercado com tipo de funcionamento Pool Simétrico onde são efetuadas ofertas simples e onde as transações ocorrem no mercado diário, porém, não reflete o problema real relacionado a este tipo de mercados. Trata-se, portanto, de um simulador básico de um mercado de energia cujo modelo de funcionamento se baseia no tipo Pool Simétrico.