946 resultados para genetic background
Resumo:
Many wild koala populations in Australia continue to experience serious declines due to factors such as disease caused by Chlamydia. This thesis is the first of its kind to investigate diversity of the chlamydial infections in wild koala populations across Australia and has made significant progress towards the development of a vaccine for koalas. The findings in this study have demonstrated that it is feasible to develop a safe and effective recombinant vaccine against Chlamydia in both disease free as well as severely diseased koalas. Most importantly, this study is also first of its kind to evaluate a multi-component vaccine that should be effective against the range of Chlamydia pecorum strains circulating in both captive as well as wild koala populations.
Resumo:
Forward genetic screens have identified numerous genes involved in development and metabolism, and remain a cornerstone of biological research. However, to locate a causal mutation, the practice of crossing to a polymorphic background to generate a mapping population can be problematic if the mutant phenotype is difficult to recognize in the hybrid F2 progeny, or dependent on parental specific traits. Here in a screen for leaf hyponasty mutants, we have performed a single backcross of an Ethane Methyl Sulphonate (EMS) generated hyponastic mutant to its parent. Whole genome deep sequencing of a bulked homozygous F2 population and analysis via the Next Generation EMS mutation mapping pipeline (NGM) unambiguously determined the causal mutation to be a single nucleotide polymorphisim (SNP) residing in HASTY, a previously characterized gene involved in microRNA biogenesis. We have evaluated the feasibility of this backcross approach using three additional SNP mapping pipelines; SHOREmap, the GATK pipeline, and the samtools pipeline. Although there was variance in the identification of EMS SNPs, all returned the same outcome in clearly identifying the causal mutation in HASTY. The simplicity of performing a single parental backcross and genome sequencing a small pool of segregating mutants has great promise for identifying mutations that may be difficult to map using conventional approaches.
Resumo:
We demonstrate that in zebrafish, the microRNA miR-451 plays a crucial role in promoting erythroid maturation, in part via its target transcript gata2. Zebrafish miR-144 and miR-451 are processed from a single precursor transcript selectively expressed in erythrocytes. In contrast to other hematopoietic mutants, the ze-brafish mutant meunier (mnr) showed intact erythroid specification but diminished miR-144/451 expression. Although erythropoiesis initiated normally in mnr, erythrocyte maturation was morphologically retarded. Morpholino knockdown of miR-451 increased erythrocyte immaturity in wild-type embryos, and miR-451 RNA duplexes partially rescued erythroid maturation in mnr, demonstrating a requirement and role for miR-451 in erythro-cyte maturation. mnr provided a selectively miR-144/451-deficient background, facilitating studies to discern miRNA function and validate candidate targets. Among computer-predicted miR-451 targets potentially mediating these biologic effects, the pro-stem cell transcription factor gata2 was an attractive candidate. In vivo reporter assays validated the predicted miR-451/gata2-3'UTR interaction, gata2 down-regulation was delayed in miR-451-knockdown and mnr embryos, and gata2 knockdown partially restored erythroid maturation in mnr, collectively confirming gata2down-regulation as pivotal for miR-451-driven erythroid maturation. These studies define a new genetic pathway promoting erythroid maturation (mnr/miR-451/gata2) and provide a rare example of partial rescue of a mutant phenotype solely by miRNA overexpression. © 2009 by The American Society of Hematology.
Resumo:
Since the discovery of RNAi, its mechanism in plants and animals has been intensively studied, widely exploited as a research tool, and used for a number of potential commercial applications. In this article, we discuss the platforms for delivering RNAi in plants. We provide a brief background to these platforms and concentrate on discussing the more recent advances, comparing the RNAi technologies used in plants with those used in animals, and trying to predict the ways in which RNAi technologies may further develop. © 2005 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
Resumo:
BACKGROUND: The molecular pathogenesis of different sensitivities of the renal proximal and distal tubular cell populations to ischemic injury, including ischemia-reperfusion (IR)-induced oxidative stress, is not well-defined. An in vitro model of oxidative stress was used to compare the survival of distal [Madin-Darby canine kidney (MDCK)] and proximal [human kidney-2 (HK-2)] renal tubular epithelial cells, and to analyze for links between induced cell death and expression and localization of selected members of the Bcl-2 gene family (anti-apoptotic Bcl-2 and Bcl-X(L), pro-apoptotic Bax and Bad). METHODS: Cells were treated with 1 mmol/L hydrogen peroxide (H2O2) or were grown in control medium for 24 hours. Cell death (apoptosis) was quantitated using defined morphological criteria. DNA gel electrophoresis was used for biochemical identification. Protein expression levels and cellular localization of the selected Bcl-2 family proteins were analyzed (Western immunoblots, densitometry, immunoelectron microscopy). RESULTS: Apoptosis was minimal in control cultures and was greatest in treated proximal cell cultures (16.93 +/- 4.18% apoptosis) compared with treated distal cell cultures (2.28 +/- 0.85% apoptosis, P < 0.001). Endogenous expression of Bcl-X(L) and Bax, but not Bcl-2 or Bad, was identified in control distal cells. Bcl-X(L) and Bax had nonsignificant increases (P> 0.05) in these cells. Bcl-2, Bax, and Bcl-X(L), but not Bad, were endogenously expressed in control proximal cells. Bcl-X(L) was significantly decreased in treated proximal cultures (P < 0.05), with Bax and Bcl-2 having nonsignificant increases (P> 0.05). Immunoelectron microscopy localization indicated that control and treated but surviving proximal cells had similar cytosolic and membrane localization of the Bcl-2 proteins. In comparison, surviving cells in the treated distal cultures showed translocation of Bcl-X(L) from cytosol to the mitochondria after treatment with H2O2, a result that was confirmed using cell fractionation and analysis of Bcl-X(L) expression levels of the membrane and cytosol proteins. Bax remained distributed evenly throughout the surviving distal cells, without particular attachment to any cellular organelle. CONCLUSION: The results indicate that in this in vitro model, the increased survival of distal compared with proximal tubular cells after oxidative stress is best explained by the decreased expression of anti-apoptotic Bcl-X(L) in proximal cells, as well as translocation of Bcl-X(L) protein to mitochondria within the surviving distal cells.
Resumo:
Background Mycobacterium abscessus is a rapidly growing mycobacterium responsible for progressive pulmonary disease, soft tissue and wound infections. The incidence of disease due to M. abscessus has been increasing in Queensland. In a study of Brisbane drinking water, M. abscessus was isolated from ten different locations. The aim of this study was to compare genotypically the M. abscessus isolates obtained from water to those obtained from human clinical specimens. Methods Between 2007 and 2009, eleven isolates confirmed as M. abscessus were recovered from potable water, one strain was isolated from a rainwater tank and another from a swimming pool and two from domestic taps. Seventy-four clinical isolates referred during the same time period were available for comparison using rep-PCR strain typing (Diversilab). Results The drinking water isolates formed two clusters with ≥97% genetic similarity (Water patterns 1 and 2). The tankwater isolate (WP4), one municipal water isolate (WP3) and the pool isolate (WP5) were distinctly different. Patient isolates formed clusters with all of the water isolates except for WP3. Further patient isolates were unrelated to the water isolates. Conclusion The high degree of similarity between strains of M. abscessus from potable water and strains causing infection in humans from the same geographical area, strengthens the possibility that drinking water may be the source of infection in these patients.
Resumo:
Server consolidation using virtualization technology has become an important technology to improve the energy efficiency of data centers. Virtual machine placement is the key in the server consolidation technology. In the past few years, many approaches to the virtual machine placement have been proposed. However, existing virtual machine placement approaches consider the energy consumption by physical machines only, but do not consider the energy consumption in communication network, in a data center. However, the energy consumption in the communication network in a data center is not trivial, and therefore should be considered in the virtual machine placement. In our preliminary research, we have proposed a genetic algorithm for a new virtual machine placement problem that considers the energy consumption in both physical machines and the communication network in a data center. Aiming at improving the performance and efficiency of the genetic algorithm, this paper presents a hybrid genetic algorithm for the energy-efficient virtual machine placement problem. Experimental results show that the hybrid genetic algorithm significantly outperforms the original genetic algorithm, and that the hybrid genetic algorithm is scalable.
Resumo:
BACKGROUND Experimental and epidemiologic evidence have suggested that chronic inflammation may play a critical role in endometrial carcinogenesis. METHODS To investigate this hypothesis, a two-stage study was carried out to evaluate single-nucleotide polymorphisms (SNP) in inflammatory pathway genes in association with endometrial cancer risk. In stage I, 64 candidate pathway genes were identified and 4,542 directly genotyped or imputed SNPs were analyzed among 832 endometrial cancer cases and 2,049 controls, using data from the Shanghai Endometrial Cancer Genetics Study. Linkage disequilibrium of stage I SNPs significantly associated with endometrial cancer (P < 0.05) indicated that the majority of associations could be linked to one of 24 distinct loci. One SNP from each of the 24 loci was then selected for follow-up genotyping. Of these, 21 SNPs were successfully designed and genotyped in stage II, which consisted of 10 additional studies including 6,604 endometrial cancer cases and 8,511 controls. RESULTS Five of the 21 SNPs had significant allelic odds ratios (ORs) and 95% confidence intervals (CI) as follows: FABP1, 0.92 (0.85-0.99); CXCL3, 1.16 (1.05-1.29); IL6, 1.08 (1.00-1.17); MSR1, 0.90 (0.82-0.98); and MMP9, 0.91 (0.87-0.97). Two of these polymorphisms were independently significant in the replication sample (rs352038 in CXCL3 and rs3918249 in MMP9). The association for the MMP9 polymorphism remained significant after Bonferroni correction and showed a significant association with endometrial cancer in both Asian- and European-ancestry samples. CONCLUSIONS These findings lend support to the hypothesis that genetic polymorphisms in genes involved in the inflammatory pathway may contribute to genetic susceptibility to endometrial cancer. Impact statement: This study adds to the growing evidence that inflammation plays an important role in endometrial carcinogenesis.
Resumo:
Many emerging economies are dangling the patent system to stimulate bio-technological innovations with the ultimate premise that these will improve their economic and social growth. The patent system mandates full disclosure of the patented invention in exchange of a temporary exclusive patent right. Recently, however, patent offices have fallen short of complying with such a mandate, especially for genetic inventions. Most patent offices provide only static information about disclosed patent sequences and even some do not keep track of the sequence listing data in their own database. The successful partnership of QUT Library and Cambia exemplifies advocacy in Open Access, Open Innovation and User Participation. The library extends its services to various departments within the university, builds and encourages research networks to complement skills needed to make a contribution in the real world.
Resumo:
Sorghum is a food and feed cereal crop adapted to heat and drought and a staple for 500 million of the world’s poorest people. Its small diploid genome and phenotypic diversity make it an ideal C4 grass model as a complement to C3 rice. Here we present high coverage (16–45 × ) resequenced genomes of 44 sorghum lines representing the primary gene pool and spanning dimensions of geographic origin, end-use and taxonomic group. We also report the first resequenced genome of S. propinquum, identifying 8 M high-quality SNPs, 1.9 M indels and specific gene loss and gain events in S. bicolor. We observe strong racial structure and a complex domestication history involving at least two distinct domestication events. These assembled genomes enable the leveraging of existing cereal functional genomics data against the novel diversity available in sorghum, providing an unmatched resource for the genetic improvement of sorghum and other grass species.
Resumo:
Breast cancer is the cancer that most commonly affects women worldwide. This type of cancer is genetically complex, but is strongly linked to steroid hormone signalling systems. Because microRNAs act as translational regulators of multiple genes, including the steroid nuclear receptors, single nucleotide polymorphisms (SNPs) in microRNAs genes can have potentially wide-ranging influences on breast cancer development. Thus, this study was conducted to investigate the relationships between six SNPs (rs6977848, rs199981120, rs185641358, rs113054794, rs66461782, and rs12940701) located in four miRNA genes predicted to target the estrogen receptor (miR-148a, miR-221, miR-186, and miR-152) and breast cancer risk in Caucasian Australian women. By using high resolution melt analysis (HRM) and polymerase chain reaction- restriction fragment length polymorphism (PCR-RFLP), 487 samples including 225 controls and 262 cases were genotyped. Analysis of their genotype and allele frequencies indicated that the differences between case and control populations was not significant for rs6977848, rs66461782, and rs12940701 because their p-values are 0.81, 0.93, 0.1 which are all above the threshold value (p=0.05). Our data thus suggests that these SNPs do not affect breast cancer risk in the tested population. In addition, rs199981120, rs185641358, and rs113054794 could not be found in this population, suggesting that these SNPs do not occur in Caucasian Australians.
Resumo:
The aim of the current study was to estimate heritabilities and correlations for body traits at different ages (Weeks 10 and 18 after stocking) in a giant freshwater prawn (Macrobrachium rosenbergii) population selected for fast growth rate in Vietnam. The dataset consisted of 4650 body records (2432 and 2218 records collected at Weeks 10 and 18, respectively) in the full pedigree comprising a total of 18 387 records. Variance and covariance components were estimated using restricted maximum likelihood fitting a multi-trait animal model. Estimates of heritability for body traits (bodyweight, body length, cephalothorax length, abdominal length, cephalothorax width and abdominal width) were moderate and ranged from 0.06 to 0.11 and from 0.11 to 0.22 at Weeks 10 and 18, respectively. Body-trait heritabilities estimated at Week 10 were not significantly lower than at Week 18. Genetic correlations between body traits within age and genetic correlations for body traits between ages were generally high. Our results suggested that selection for high growth rate in GFP can be undertaken successfully before full market size has been reached.
Resumo:
This paper presents a computational method for eliminating severe stress concentration at the unsupported railhead ends in rail joints through innovative shape optimization of the contact zone, which is complex due to near field nonlinear contact. With a view to minimizing the computational efforts, hybrid genetic algorithm method coupled with parametric finite element has been developed and compared with the traditional genetic algorithm (GA). The shape of railhead top surface where the wheel contacts nonlinearly was optimized using the hybridized GA method. Comparative study of the optimal result and the search efficiency between the traditional and hybrid GA methods has shown that the hybridized GA provides the optimal shape in fewer computational cycles without losing accuracy. The method will be beneficial to solving complex engineering problems involving contact nonlinearity.
Resumo:
MapReduce is a computation model for processing large data sets in parallel on large clusters of machines, in a reliable, fault-tolerant manner. A MapReduce computation is broken down into a number of map tasks and reduce tasks, which are performed by so called mappers and reducers, respectively. The placement of the mappers and reducers on the machines directly affects the performance and cost of the MapReduce computation. From the computational point of view, the mappers/reducers placement problem is a generation of the classical bin packing problem, which is NPcomplete. Thus, in this paper we propose a new grouping genetic algorithm for the mappers/reducers placement problem in cloud computing. Compared with the original one, our grouping genetic algorithm uses an innovative coding scheme and also eliminates the inversion operator which is an essential operator in the original grouping genetic algorithm. The new grouping genetic algorithm is evaluated by experiments and the experimental results show that it is much more efficient than four popular algorithms for the problem, including the original grouping genetic algorithm.
Resumo:
A Software-as-a-Service or SaaS can be delivered in a composite form, consisting of a set of application and data components that work together to deliver higher-level functional software. Components in a composite SaaS may need to be scaled – replicated or deleted, to accommodate the user’s load. It may not be necessary to replicate all components of the SaaS, as some components can be shared by other instances. On the other hand, when the load is low, some of the instances may need to be deleted to avoid resource underutilisation. Thus, it is important to determine which components are to be scaled such that the performance of the SaaS is still maintained. Extensive research on the SaaS resource management in Cloud has not yet addressed the challenges of scaling process for composite SaaS. Therefore, a hybrid genetic algorithm is proposed in which it utilises the problem’s knowledge and explores the best combination of scaling plan for the components. Experimental results demonstrate that the proposed algorithm outperforms existing heuristic-based solutions.