987 resultados para funding models
Resumo:
Introduction Hydrogels prepared from star-shaped poly(ethylene glycol) (PEG) and maleimide-functionalized heparin provide a potential matrix for use in developing three dimensional (3D) models. We have previously demonstrated that these hydrogels support the cultivation of human umbilical vein endothelial cells (HUVECs). We extend this body of work to study the ability to create an extracellular matrix (ECM)-like model to study breast and prostate cancer cell growth in 3D. Also, we investigate the ability to produce a tri-culture mimicking tumour angiogenesis with cancer spheroids, HUVECs and mesenchymal stem cells (MSCs). Materials and Methods The breast cancer cell lines, MCF-7 and MDA-MB-231, and prostate cancer cell lines, LNCaP and PC3, were seeded into starPEG-heparin hydrogels and grown for 14 Days to analyze the effects of varying hydrogel stiffness on spheroid development. Resulting hydrogel constructs were analyzed via proliferation assays, light microscopy, and immunostaining. Cancer cell lines were then seeded into starPEG-heparin hydrogels functionalized with growth factors as spheroids with HUVECs and MSCs and grown as a tri-culture. Cultures were analyzed via immunostaining and observed using confocal microscopy. Results Cultures prepared in MMP-cleavable starPEG-heparin hydrogels display spheroid formation in contrast to adherent growth on tissue culture plastic. Small differences were visualized in cancer spheroid growth between different gel stiffness across the range of cell lines. Cancer cell lines were able to be co-cultivated with HUVECs and MSC. Interaction was visualized between tumours and HUVECs via confocal microscopy. Further studies intend to further optimize and mimic the ECM environment of in-situ tumour angiogenesis. Discussion Our results confirm the suitability of hydrogels constructed from starPEG-heparin for HUVEC and MSC co-cultivation with cancer cell lines to study cell-cell and cell-matrix interactions in a 3D environment. This represents a step forward in the development of 3D culture models to study the pathomechanisms of breast and prostate cancer.
Resumo:
Background Despite the widely recognised importance of sustainable health care systems, health services research remains generally underfunded in Australia. The Australian Centre for Health Services Innovation (AusHSI) is funding health services research in the state of Queensland. AusHSI has developed a streamlined protocol for applying and awarding funding using a short proposal and accelerated peer review. Method An observational study of proposals for four health services research funding rounds from May 2012 to November 2013. A short proposal of less than 1,200 words was submitted using a secure web-based portal. The primary outcome measures are: time spent preparing proposals; a simplified scoring of grant proposals (reject, revise or accept for interview) by a scientific review committee; and progressing from submission to funding outcomes within eight weeks. Proposals outside of health services research were deemed ineligible. Results There were 228 eligible proposals across 4 funding rounds: from 29% to 79% were shortlisted and 9% to 32% were accepted for interview. Success rates increased from 6% (in 2012) to 16% (in 2013) of eligible proposals. Applicants were notified of the outcomes within two weeks from the interview; which was a maximum of eight weeks after the submission deadline. Applicants spent 7 days on average preparing their proposal. Applicants with a ranking of reject or revise received written feedback and suggested improvements for their proposals, and resubmissions composed one third of the 2013 rounds. Conclusions The AusHSI funding scheme is a streamlined application process that has simplified the process of allocating health services research funding for both applicants and peer reviewers. The AusHSI process has minimised the time from submission to notification of funding outcomes.
Resumo:
This project investigated the calcium distributions of the skin, and the growth patterns of skin substitutes grown in the laboratory, using mathematical models. The research found that the calcium distribution in the upper layer of the skin is controlled by three different mechanisms, not one as previously thought. The research also suggests that tight junctions, which are adhesions between neighbouring skin cells, cannot be solely responsible for the differences in the growth patterns of skin substitutes and normal skin.
Resumo:
That’s what one researcher told us when we asked them about applying for NHMRC Project Grant funding. Others said that applying for funding had made them ill, lost them friends, ruined Christmas and caused arguments with friends and family. What makes applying for funding so bad? We’ve tried to summarise the problems with the system in the diagram above. This is based on our group’s four years of research into the funding process. Some of the arrows are based on evidence from our surveys (Survey 1, Survey 2), others are based on anecdote or experience and so maybe wrong. Please let me know if I’ve missed an arrow or an issue.
Resumo:
Local spatio-temporal features with a Bag-of-visual words model is a popular approach used in human action recognition. Bag-of-features methods suffer from several challenges such as extracting appropriate appearance and motion features from videos, converting extracted features appropriate for classification and designing a suitable classification framework. In this paper we address the problem of efficiently representing the extracted features for classification to improve the overall performance. We introduce two generative supervised topic models, maximum entropy discrimination LDA (MedLDA) and class- specific simplex LDA (css-LDA), to encode the raw features suitable for discriminative SVM based classification. Unsupervised LDA models disconnect topic discovery from the classification task, hence yield poor results compared to the baseline Bag-of-words framework. On the other hand supervised LDA techniques learn the topic structure by considering the class labels and improve the recognition accuracy significantly. MedLDA maximizes likelihood and within class margins using max-margin techniques and yields a sparse highly discriminative topic structure; while in css-LDA separate class specific topics are learned instead of common set of topics across the entire dataset. In our representation first topics are learned and then each video is represented as a topic proportion vector, i.e. it can be comparable to a histogram of topics. Finally SVM classification is done on the learned topic proportion vector. We demonstrate the efficiency of the above two representation techniques through the experiments carried out in two popular datasets. Experimental results demonstrate significantly improved performance compared to the baseline Bag-of-features framework which uses kmeans to construct histogram of words from the feature vectors.
Resumo:
Railway capacity determination and expansion are very important topics. In prior research, the competition between different entities such as train services and train types, on different network corridors however have been ignored, poorly modelled, or else assumed to be static. In response, a comprehensive set of multi-objective models have been formulated in this article to perform a trade-off analysis. These models determine the total absolute capacity of railway networks as the most equitable solution according to a clearly defined set of competing objectives. The models also perform a sensitivity analysis of capacity with respect to those competing objectives. The models have been extensively tested on a case study and their significant worth is shown. The models were solved using a variety of techniques however an adaptive E constraint method was shown to be most superior. In order to identify only the best solution, a Simulated Annealing meta-heuristic was implemented and tested. However a linearization technique based upon separable programming was also developed and shown to be superior in terms of solution quality but far less in terms of computational time.
Resumo:
Traditional sensitivity and elasticity analyses of matrix population models have been used to inform management decisions, but they ignore the economic costs of manipulating vital rates. For example, the growth rate of a population is often most sensitive to changes in adult survival rate, but this does not mean that increasing that rate is the best option for managing the population because it may be much more expensive than other options. To explore how managers should optimize their manipulation of vital rates, we incorporated the cost of changing those rates into matrix population models. We derived analytic expressions for locations in parameter space where managers should shift between management of fecundity and survival, for the balance between fecundity and survival management at those boundaries, and for the allocation of management resources to sustain that optimal balance. For simple matrices, the optimal budget allocation can often be expressed as simple functions of vital rates and the relative costs of changing them. We applied our method to management of the Helmeted Honeyeater (Lichenostomus melanops cassidix; an endangered Australian bird) and the koala (Phascolarctos cinereus) as examples. Our method showed that cost-efficient management of the Helmeted Honeyeater should focus on increasing fecundity via nest protection, whereas optimal koala management should focus on manipulating both fecundity and survival simultaneously. These findings are contrary to the cost-negligent recommendations of elasticity analysis, which would suggest focusing on managing survival in both cases. A further investigation of Helmeted Honeyeater management options, based on an individual-based model incorporating density dependence, spatial structure, and environmental stochasticity, confirmed that fecundity management was the most cost-effective strategy. Our results demonstrate that decisions that ignore economic factors will reduce management efficiency. ©2006 Society for Conservation Biology.
Resumo:
The quality of environmental decisions should be gauged according to managers' objectives. Management objectives generally seek to maximize quantifiable measures of system benefit, for instance population growth rate. Reaching these goals often requires a certain degree of learning about the system. Learning can occur by using management action in combination with a monitoring system. Furthermore, actions can be chosen strategically to obtain specific kinds of information. Formal decision making tools can choose actions to favor such learning in two ways: implicitly via the optimization algorithm that is used when there is a management objective (for instance, when using adaptive management), or explicitly by quantifying knowledge and using it as the fundamental project objective, an approach new to conservation.This paper outlines three conservation project objectives - a pure management objective, a pure learning objective, and an objective that is a weighted mixture of these two. We use eight optimization algorithms to choose actions that meet project objectives and illustrate them in a simulated conservation project. The algorithms provide a taxonomy of decision making tools in conservation management when there is uncertainty surrounding competing models of system function. The algorithms build upon each other such that their differences are highlighted and practitioners may see where their decision making tools can be improved. © 2010 Elsevier Ltd.
Resumo:
Strategic searching for invasive pests presents a formidable challenge for conservation managers. Limited funding can necessitate choosing between surveying many sites cursorily, or focussing intensively on fewer sites. While existing knowledge may help to target more likely sites, e.g. with species distribution models (maps), this knowledge is not flawless and improving it also requires management investment. 2.In a rare example of trading-off action against knowledge gain, we combine search coverage and accuracy, and its future improvement, within a single optimisation framework. More specifically we examine under which circumstances managers should adopt one of two search-and-control strategies (cursory or focussed), and when they should divert funding to improving knowledge, making better predictive maps that benefit future searches. 3.We use a family of Receiver Operating Characteristic curves to reflect the quality of maps that direct search efforts. We demonstrate our framework by linking these to a logistic model of invasive spread such as that for the red imported fire ant Solenopsis invicta in south-east Queensland, Australia. 4.Cursory widespread searching is only optimal if the pest is already widespread or knowledge is poor, otherwise focussed searching exploiting the map is preferable. For longer management timeframes, eradication is more likely if funds are initially devoted to improving knowledge, even if this results in a short-term explosion of the pest population. 5.Synthesis and applications. By combining trade-offs between knowledge acquisition and utilization, managers can better focus - and justify - their spending to achieve optimal results in invasive control efforts. This framework can improve the efficiency of any ecological management that relies on predicting occurrence. © 2010 The Authors. Journal of Applied Ecology © 2010 British Ecological Society.
Resumo:
Decision-making for conservation is conducted within the margins of limited funding. Furthermore, to allocate these scarce resources we make assumptions about the relationship between management impact and expenditure. The structure of these relationships, however, is rarely known with certainty. We present a summary of work investigating the impact of model uncertainty on robust decision-making in conservation and how this is affected by available conservation funding. We show that achieving robustness in conservation decisions can require a triage approach, and emphasize the need for managers to consider triage not as surrendering but as rational decision making to ensure species persistence in light of the urgency of the conservation problems, uncertainty, and the poor state of conservation funding. We illustrate this theory by a specific application to allocation of funding to reduce poaching impact on the Sumatran tiger Panthera tigris sumatrae in Kerinci Seblat National Park, Indonesia. To conserve our environment, conservation managers must make decisions in the face of substantial uncertainty. Further, they must deal with the fact that limitations in budgets and temporal constraints have led to a lack of knowledge on the systems we are trying to preserve and on the benefits of the actions we have available (Balmford & Cowling 2006). Given this paucity of decision-informing data there is a considerable need to assess the impact of uncertainty on the benefit of management options (Regan et al. 2005). Although models of management impact can improve decision making (e.g.Tenhumberg et al. 2004), they typically rely on assumptions around which there is substantial uncertainty. Ignoring this 'model uncertainty', can lead to inferior decision-making (Regan et al. 2005), and potentially, the loss of the species we are trying to protect. Current methods used in ecology allow model uncertainty to be incorporated into the model selection process (Burnham & Anderson 2002; Link & Barker 2006), but do not enable decision-makers to assess how this uncertainty would change a decision. This is the basis of information-gap decision theory (info-gap); finding strategies most robust to model uncertainty (Ben-Haim 2006). Info-gap has permitted conservation biology to make the leap from recognizing uncertainty to explicitly incorporating severe uncertainty into decision-making. In this paper we present a summary of McDonald-Madden et al (2008a) who use an info-gap framework to address the impact of uncertainty in the functional representations of biological systems on conservation decision-making. Furthermore, we highlight the importance of two key elements limiting conservation decision-making - funding and knowledge - and how they interact to influence the best management strategy for a threatened species. Copyright © ASCE 2011.
Resumo:
This thesis focused upon the development of improved capacity analysis and capacity planning techniques for railways. A number of innovations were made and were tested on a case study of a real national railway. These techniques can reduce the time required to perform decision making activities that planners and managers need to perform. As all railways need to be expanded to meet increasing demands, the presumption that analytical capacity models can be used to identify how best to improve an existing network at least cost, was fully investigated. Track duplication was the mechanism used to expanding a network's capacity, and two variant capacity expansion models were formulated. Another outcome of this thesis is the development and validation of bi objective models for capacity analysis. These models regulate the competition for track access and perform a trade-off analysis. An opportunity to develop more general mulch-objective approaches was identified.
Resumo:
Wound healing and tumour growth involve collective cell spreading, which is driven by individual motility and proliferation events within a population of cells. Mathematical models are often used to interpret experimental data and to estimate the parameters so that predictions can be made. Existing methods for parameter estimation typically assume that these parameters are constants and often ignore any uncertainty in the estimated values. We use approximate Bayesian computation (ABC) to estimate the cell diffusivity, D, and the cell proliferation rate, λ, from a discrete model of collective cell spreading, and we quantify the uncertainty associated with these estimates using Bayesian inference. We use a detailed experimental data set describing the collective cell spreading of 3T3 fibroblast cells. The ABC analysis is conducted for different combinations of initial cell densities and experimental times in two separate scenarios: (i) where collective cell spreading is driven by cell motility alone, and (ii) where collective cell spreading is driven by combined cell motility and cell proliferation. We find that D can be estimated precisely, with a small coefficient of variation (CV) of 2–6%. Our results indicate that D appears to depend on the experimental time, which is a feature that has been previously overlooked. Assuming that the values of D are the same in both experimental scenarios, we use the information about D from the first experimental scenario to obtain reasonably precise estimates of λ, with a CV between 4 and 12%. Our estimates of D and λ are consistent with previously reported values; however, our method is based on a straightforward measurement of the position of the leading edge whereas previous approaches have involved expensive cell counting techniques. Additional insights gained using a fully Bayesian approach justify the computational cost, especially since it allows us to accommodate information from different experiments in a principled way.
Resumo:
PURPOSE: This paper describes dynamic agent composition, used to support the development of flexible and extensible large-scale agent-based models (ABMs). This approach was motivated by a need to extend and modify, with ease, an ABM with an underlying networked structure as more information becomes available. Flexibility was also sought after so that simulations are set up with ease, without the need to program. METHODS: The dynamic agent composition approach consists in having agents, whose implementation has been broken into atomic units, come together at runtime to form the complex system representation on which simulations are run. These components capture information at a fine level of detail and provide a vast range of combinations and options for a modeller to create ABMs. RESULTS: A description of the dynamic agent composition is given in this paper, as well as details about its implementation within MODAM (MODular Agent-based Model), a software framework which is applied to the planning of the electricity distribution network. Illustrations of the implementation of the dynamic agent composition are consequently given for that domain throughout the paper. It is however expected that this approach will be beneficial to other problem domains, especially those with a networked structure, such as water or gas networks. CONCLUSIONS: Dynamic agent composition has many advantages over the way agent-based models are traditionally built for the users, the developers, as well as for agent-based modelling as a scientific approach. Developers can extend the model without the need to access or modify previously written code; they can develop groups of entities independently and add them to those already defined to extend the model. Users can mix-and-match already implemented components to form large-scales ABMs, allowing them to quickly setup simulations and easily compare scenarios without the need to program. The dynamic agent composition provides a natural simulation space over which ABMs of networked structures are represented, facilitating their implementation; and verification and validation of models is facilitated by quickly setting up alternative simulations.
Resumo:
We propose a method for learning specific object representations that can be applied (and reused) in visual detection and identification tasks. A machine learning technique called Cartesian Genetic Programming (CGP) is used to create these models based on a series of images. Our research investigates how manipulation actions might allow for the development of better visual models and therefore better robot vision. This paper describes how visual object representations can be learned and improved by performing object manipulation actions, such as, poke, push and pick-up with a humanoid robot. The improvement can be measured and allows for the robot to select and perform the `right' action, i.e. the action with the best possible improvement of the detector.
Resumo:
Epigenetic changes correspond to heritable modifications of the chromosome structure, which do not involve alteration of the DNA sequence but do affect gene expression. These mechanisms play an important role in normal cell differentiation, but aberration is associated also with several diseases, including cancer and neural disorders. In consequence, despite intensive studies in recent years, the contribution of modifications remains largely unquantified due to overall system complexity and insufficient data. Computational models can provide powerful auxiliary tools to experimentation, not least as scales from the sub-cellular through cell populations (or to networks of genes) can be spanned. In this paper, the challenges to development, of realistic cross-scale models, are discussed and illustrated with respect to current work.