972 resultados para focal epilepsy


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bibliography: p. 159-166.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

S100 proteins promote cancer cell migration and metastasis. To investigate their roles in the process of migration we have constructed inducible systems for S100P in rat mammary and human HeLa cells that show a linear relationship between its intracellular levels and cell migration. S100P, like S100A4, differentially interacts with the isoforms of nonmuscle myosin II (NMIIA, K(d) = 0.5 µm; IIB, K(d) = 8 µm; IIC, K(d) = 1.0 µm). Accordingly, S100P dissociates NMIIA and IIC filaments but not IIB in vitro. NMIIA knockdown increases migration in non-induced cells and there is no further increase upon induction of S100P, whereas NMIIB knockdown reduces cell migration whether or not S100P is induced. NMIIC knockdown does not affect S100P-enhanced cell migration. Further study shows that NMIIA physically interacts with S100P in living cells. In the cytoplasm, S100P occurs in discrete nodules along NMIIA-containing filaments. Induction of S100P causes more peripheral distribution of NMIIA filaments. This change is paralleled by a significant drop in vinculin-containing, actin-terminating focal adhesion sites (FAS) per cell. The induction of S100P, consequently, causes significant reduction in cellular adhesion. Addition of a focal adhesion kinase (FAK) inhibitor reduces disassembly of FAS and thereby suppresses S100P-enhanced cell migration. In conclusion, this work has demonstrated a mechanism whereby the S100P-induced dissociation of NMIIA filaments leads to a weakening of FAS, reduced cell adhesion, and enhanced cell migration, the first major step in the metastatic cascade.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective: It is investigated to which extent measures of nonlinearity derived from surrogate data analysis are capable to quantify the changes of epileptic activity related to varying vigilance levels. Methods: Surface and intracranial EEG from foramen ovale (FO-)electrodes was recorded from a patient with temporal lobe epilepsy under presurgical evaluation over one night. Different measures of nonlinearity were estimated for non-overlapping 30-s segments for selected channels from surface and intracranial EEG. Additionally spectral measures were calculated. Sleep stages were scored according to Rechtschaffen/Kales and epileptic transients were counted and classified by visual inspection. Results: In the intracranial recordings stronger nonlinearity was found ipsilateral to the epileptogenic focus, more pronounced in NREM sleep, weaker in REM sleep. The dynamics within the NREM episodes varied with the different nonlinearity measures. Some nonlinearity measures showed variations with the sleep cycle also in the intracranial recordings contralateral to the epileptic focus and in the surface EEG. It is shown that the nonlinearity is correlated with short-term fluctuations of the delta power. The higher frequency of occurrence of clinical relevant epileptic spikes in the first NREM episode was not clearly reflected in the nonlinearity measures. Conclusions: It was confirmed that epileptic activity renders the EEG nonlinear. However, it was shown that the sleep dynamics itself also effects the nonlinearity measures. Therefore, at the present stage it is not possible to establish a unique connection between the studied nonlinearity measures and specific types of epileptic activity in sleep EEG recordings.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Despite the multiplicity of approaches and techniques so far applied for identifying the pathophysiological mechanisms of photosensitive epilepsy, a generally agreed explanation of the phenomenon is still lacking. The present thesis reports on three interlinked original experimental studies conducted to explore the neurophysiological correlates and the phatophysiological mechanism of photosensitive epilepsy. In the first study I assessed the role of the habituation of the Visual Evoked Response test as a possible biomarker of epileptic visual sensitivity. The two subsequent studies were designed to address specific research questions emerging from the results of the first study. The findings of the three intertwined studies performed provide experimental evidence that photosensitivity is associated with changes in a number of electrophysiological measures suggestive of altered balance between excitatory and inhibitory cortical processes. Although a strong clinical association does exist between specific epileptic syndromes and visual sensitivity, results from this research indicate that photosensitivity trait seems to be the expression of specific pathophysiological mechanisms quite distinct from the “epileptic” phenotype. The habituation of Pattern Reversal Visual Evoked Potential (PR-VEP) appears as a reliable candidate endo-phenotype of visual sensitivity. Interpreting the findings of this study in the context of the broader literature on visual habituation we can hypothesise the existence of a shared neurophysiological background between photosensitive epilepsy and migraine. Future studies to elucidate the relationship between the proposed indices of cortical excitability and specific polymorphisms of excitatroy and inhibitory neurotransmission will need to be conducted to assess their potential role as biomarkers of photosensitivity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Photosensitive epilepsy and associated pattern sensitivity are more prevalent in females and are usually treated with sodium valproate. Sodium valproate has an adverse effect profile, which particularly affects females, including teratogenicity, association with the polycystic ovary syndrome and weight gain. It would be useful therefore if an alternative treatment for photosensitive epilepsy could be found. The principle aim of this study was to investigate the effectiveness of lamotrigine in the treatment of photosensitive epilepsy in adults and children. Patients were either drug-naive, commencing lamotrigine therapy or were transferring from other antiepileptic drugs to lamotrigine (primarily sodium valproate) due to lack of response, adverse effects or desired pregnancy. The photoparoxsymal response in the electroencephalograph was used as the primary measure of photo and pattern sensitivity. In addition the effects of lamotrigine on occipital spikes and normal responses in the EEG to visual stimuli were investigated. Secondary measures also included the resting EEG, seizures, body mass index, menstrual function, mood and cognitive function. The results suggest that in adult patients lamotrigine is efficacious in the treatment of photosensitive epilepsy, although it appears inferior to sodium valproate. Lamotrigine does however have a more favourable adverse effect profile than valproate. The results indicate that lamotrigine therapy is suitable for photosensitive epilepsy in women of childbearing age or in patients experiencing unacceptable adverse effects with valproate therapy. Patients are more likely to respond to lamotrigine treatment if they present with sensitivity to a limited number of frequencies. Lamotrigine does not seem to be as efficacious in the treatment of children, although against it may be considered a second line drug if the child does not respond to or will not tolerate sodium valproate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chapters one to three are an introduction to photosensitive epilepsy, electroencephalography (EEG) and the magnocellular and parvocellular visual pathways. Photoparoxysmal response (PPR) are strongly associated with photosensitive epilepsy. Chapters four to nine investigated whether occipital spikes were associated with PPR and hence with photosensitive epilepsy. The chapters investigated whether the response types showed similar dependence on stimulus characteristics using EEG. Chapters four and five found that occipital spikes and PPR showed different dependence on colour and luminance contrast. The differences were consistent with the magnocellular pathway mediating occipital spikes and the pavocellular pathway mediating PPR. The study in chapter eight found that monocular occlusion had a significantly greater effect on PPR than on occipital spikes, which is further evidence against an association between the two types of response. Chapters six and seven showed that occipital spikes and PPR had similar optimum spatial and temporal frequencies. Chapter nine showed that both response types could be generated via stimulation of the periphery of the retina. However, these three chapters are not strong evidence of an association, as the results do not contradict the theory that the responses are generated via different pathways. The magnocellular and pavocellular pathways have similar optimum temporal and spatial frequencies and both are present in the periphery. In chapter ten, magnetoencephalography was used to estimate the source of activity underlying the components of the VEP and occipital spike. Changes in the amplitude and latency in the components of the normal VEP are associated with epilepsy. However, the source underlying the occipital spikes was not related to that underlying the components of the VEP so this is also removed as a source of evidence for an association between occipital spikes and photosensitive epilepsy.