824 resultados para estufa
Resumo:
Malformations and possible damages to the urogenital system can be originated in the embryonic period. Moreover, fire guns, knives and accidents, where there is the disruption of the urethra, also cause these lesions. The objective was to analyze the contribution of tissue engineering in the construction of neo-urethra, developed by bioengineering. We performed an urothelial ex vivo expansion of cells in 3D scaffolds (platelet gel matrix and acellular porcine aorta) to assess the contribution of this technique in the construction of a neo-urethra. Mechanical dissociation was made of the inner wall of 10 North Folk rabbit’s bladder, weighing 2.5 to 3.0 kg. After dissociation the cell content was centrifuged and obtained a pellet of urothelial cells. The pellet was ressuspended in culture medium DMEM F12 and cells were maintained in culture for 15 days. Immunohistochemical analysis characterized the urothelial culture. The cells were then implanted in the scaffold - platelet gel. In a second experiment using aortic porcine acellular matrix were implanted urothelial cells alone and urothelial cells on platelet gel, on the inner wall of the scaffold - aorta, with space for setting bordered by a urethral probe. The complex probe - cells - aorta and probe - cells in platelet gel - aorta, were sealed with suture material and culture were maintained in a humidified 37ºC incubator with 5% CO2 in air for 12 days to subsequent histological analysis of urothelium cell adhesion to the scaffolds. By observation under an optical microscope, we could see the growth of cells in the scaffold platelet gel, from a monolayer in to a three-dimensional structure. In the acellular porcine aortic matrix containing the platelet gel, we could observe a few quantity of urothelial cells adhered. However with the acellular porcine aortic matrix in which was implanted only the urothelial cells, we have obtained adhesion to the wall
Resumo:
The uninterrupted rise in emission of greenhouse gases open way to the use of biofuels, due to politics that focus on fuel safe, clean and renewable. The use of microalgae for biodiesel production has been described as one of the most promising sources of biomass for biofuels. The aim of this study was to evaluate the extraction and lipid profile of the microalgae Dunaliella tertiolecta, Isochrysis galbana and Tetraselsim gracilis. The extractions were performed with solvents chloroform /methanol and petroleum ether. The lipid profile was analyzed by gas chromatography after transesterification.The petroleum ether showed more efficiency in the extraction, the best result obtained was in the microalgae D. tertiolecta with 19.52% of lipid. The lipid profile analysis indicated a biodiesel stable to oxidation and elevated viscosity
Resumo:
In Brazil, The power generation has always depended on the rivers, in other words, there are moments that the power generation can vary, which can cause variations in energy supply and even blackout according to the level of water in the reservoirs of the hydroelectric plants. For this reason, many options has been studied, like our example, which is about a combined cycle power plant in Canas. The use of combined cycle is interesting from the point o view of energy, because its efficiency is between 50 and 60%, and from the point of view of environment, because it can burn natural gas, which is cleaner than coal, it reduces the emission of gases that influence on the greenhouse effect. This work aims to perform a technical analysis of a case study of a power plant proposed to be built in Canas by the AES/AES Tietê Group. For the analysis will be used the commercial software GateCycle 6.0.0 from GE, this software has the power of simulating power generation cycles (nuclear, combined, etc.). The energy department of UNESP has the license, which makes possible the academic use of this tool. Two combined cycles were simulated, one using one pressure level HRSG, and another one closer to the real power plant, which is a combined cycle with a three pressure level HRSG. The results were close to expected, for the combined cycle with one pressure HRSG the power was 513,9 MW and a efficiency of 53,27%, in the case with the three pressure level HRSG the power was 517,1 MW and a efficiency of 53,5%. We conclude that the software requires that the user must have the knowledge about the subjects involved in the use of GateCycle in problems resolutions
Resumo:
The objective of the present work was to evaluate surface of experimental alloy Ti-7.5Mo after hydrothermal treatment. Ingots were obtained in arc melting furnace under an argon atmosphere and then homogenized under vacuum at 1100ºC for 86.4 ks to eliminate chemical segregation and after cold worked discs were cutting and grinding. For surface treatment, samples were immersed in a container with NaOH aqueous solution 5M, autoclaved, washed with distilled water. Followed, samples were heat treated and they were soaking in 5xSBF to form an apatite layer on the surface. Surfaces were investigated by, scanning electron microscopy, X-Rays powder diffraction, atomic force microscopy and contact angle, in order to evaluate the wettability of the alloy surface. The results were compared with our previous studies using the group of chemical surface treatments and results shows better condition is 120 minutes in the autoclave
Resumo:
Pós-graduação em Medicina Veterinária - FCAV
Resumo:
The gas turbine (GT) is known to have: low cost of capital over the amount of energy, high flexibility, high reliability, short delivery time, commissioning and commercial operation at the beginning and quick departure. The gas turbine is also recognized for its superior environmental performance, manifested in air pollution containment and reducing greenhouse gases (Mahi, 1994). Gas turbines in simple cycle mode (SC) have long been used by utilities to limited power generation peak. In addition, manufacturing facilities use gas turbines for power generation units on site, often in combination with the process of heat production, such as hot water and steam process. In recent years, the performance of industrial gas turbines has been improved due to significant investments in research and development, in terms of fuel to electricity conversion efficiency, plant capacity, availability and reliability. The greater availability of energy resources such as natural gas (NG), the significant reduction of capital costs and the introduction of advanced cycles, have also been a success factor for the increased use of gas turbines to load applications base (Poulikas, 2004). Open Cycle Gas Turbine with a greater degree of heat to the atmosphere may alternatively be used to produce additional electricity using a steam cycle, or to compose a cogeneration process. The combined cycle (CC) uses the heat from the gas turbine exhaust gas to increase the power output and increase the overall efficiency of more than 50% second (Najjar, 2001). The initial discovery of these cycles in the commercial power generation market was possible due to the development of the gas turbine. Only from the 1970s that gas turbine inlet temperature and therefore the exhaust gas temperature was sufficiently high to allow a better efficiency in the combined cycle ... (Complete Abstract click electronic access below)
Resumo:
Pós-graduação em Odontologia Restauradora - ICT
Resumo:
Pós-graduação em Engenharia Mecânica - FEG
Resumo:
Pós-graduação em Agronomia (Irrigação e Drenagem) - FCA
Resumo:
Pós-graduação em Zootecnia - FCAV
Resumo:
Pós-graduação em Ciência Odontólogica - FOA
Resumo:
Pós-graduação em Odontologia Restauradora - ICT
Resumo:
Pós-graduação em Odontologia Restauradora - ICT
Resumo:
The process of steel production emits a large quantity of greenhouse gases, specifically carbon dioxide (CO2), and the reduction of such emissions is one of the main challenges for the industry in the 21st. Century. To quantify these emissions, the Worldsteel Association (association of the 170 large steel manufacturers of the world) published a methodology (CO2 Emission Data Collection) for calculation and comparison of CO2 emissions among its members. After that, in 2010, this methodology became an ISO (International Organization for Standardization) norm. Today, the calculation of the CO2 emissions in steel making companies follow the ISO 14404-1 for units with blast furnaces and the ISO 14404-2 for units with electric furnaces. In the last years, new technologies were and continue to be developed for the steel making sector aiming at energetic improvements and greenhouse gas reductions (mainly CO2) by the several processes involved in the production of steel. This work had the objective of producing a tool to calculate the CO2 emissions for the steel making sector. An Excel spreadsheet was developed to calculate the emission intensities of CO2 of a steel plant, the Usina Presidente Vargas, of the Companhia Siderúrgica Nacional (CSN). The spreadsheet furnishes results of CO2 emissions and energetic fluxes, and simulates the benefits that some of the new technologies can give to the company. The spreadsheet calculates the emissions in two ways: a) based on the carbon fluxes that enter the unit, and b) based on the emissions of each specific process within the unit (coking, sinterization, blast furnace, among others)
Resumo:
Introdução:.O cultivo de plantas medicinais é uma prática essencial para a conservação das espécies e para garantir a oferta de matéria-prima com padrão de qualidade constante. Para que a terapia com plantas medicinais tenha eficácia e segurança, é imprescindível ao longo do cultivo, a execução de práticas fitotécnicas adequadas a cada espécie vegetal, visto que o desenvolvimento desta está sob a influencia das variações climáticas, dos cuidados com a irrigação, adubação, etc. Objetivo: Verificar os efeitos de diferentes doses de vermicomposto na produção de matéria seca e óleo essencial de Foeniculum vulgare Mill., cultivado em vasos em condições de estufa agrícola. Material e métodos: Sementes de F. vulgare foram colhidas no Horto de Plantas Medicinais e Tóxicas da FCF-UNESP e semeadas em vasos de 300 mL. Após 40 dias da semeadura as mudas foram transplantadas para vasos de 4L contendo solo tratado com vermicomposto nas doses de 0, 15, 30, 45 e 60 t ha-1. Ao final de 90 dias de cultivo as partes aéreas (folhas e caules) foram colhidas, secadas e analisadas quanto ao teor de óleo essencial. A identificação do anetol no óleo essencial foi realizada por CCD. Resultados: Os tratamentos durante o período de cultivo analisado influenciaram a produção de biomassa das plantas e também a produção do óleo essencial, porém sem uma correspondência diretamente proporcional. As plantas tenderam a produzir mais biomassa do que óleos essenciais em relação ao tratamento testemunha. Conclusão: Houve influência das doses de vermicomposto no cultivo de funcho (durante 90 dias, em vasos, em casa de vegetação), porém não correlacionada à produção de óleo essencial das folhas.