921 resultados para estuarine geomorphology
Resumo:
Although shorebirds spending the winter in temperate areas frequently use estuarine and supratidal (upland) feeding habitats, the relative contribution of each habitat to individual diets has not been directly quantified. We quantified the proportional use that Calidris alpina pacifica (Dunlin) made of estuarine vs. terrestrial farmland resources on the Fraser River Delta, British Columbia, using stable isotope analysis (δ13C, δ15N) of blood from 268 Dunlin over four winters, 1997 through 2000. We tested for individual, age, sex, morphological, seasonal, and weather-related differences in dietary sources. Based on single- (δ13C) and dual-isotope mixing models, the agricultural habitat contributed approximately 38% of Dunlin diet averaged over four winters, with the balance from intertidal flats. However, there was a wide variation among individuals in the extent of agricultural feeding, ranging from about 1% to 95% of diet. Younger birds had a significantly higher terrestrial contribution to diet (43%) than did adults (35%). We estimated that 6% of adults and 13% of juveniles were obtaining at least 75% of their diet from terrestrial sources. The isotope data provided no evidence for sex or overall body size effects on the proportion of diet that is terrestrial in origin. The use of agricultural habitat by Dunlin peaked in early January. Adult Dunlin obtained a greater proportion of their diet terrestrially during periods of lower temperatures and high precipitation, whereas no such relationship existed for juveniles. Seasonal variation in the use of agricultural habitat suggests that it is used more during energetically stressful periods. The terrestrial farmland zone appears to be consistently important as a habitat for juveniles, but for adults it may provide an alternative feeding site used as a buffer against starvation during periods of extreme weather. Loss or reduction of agricultural habitat adjacent to estuaries may negatively impact shorebird fitness, with juveniles disproportionately affected.
Resumo:
The Muleshoe Dunes, an east-west trending dunefield on the border separating Texas and New Mexico, consist of two distinct components: a white (carbonate rich) component and an overlying pink (quartz rich) component. The pink component exhibits significant spatial variation in redness. The reddest sands, in the western part of the dunefield, decrease in redness towards the east. This gradient is thought to result from abrasion of all iron-rich, red clay coating as the sediments were transported eastward by Late Quaternary aeolian processes. The effects of aeolian abrasion on the spectral signature and surface texture of the sediments were examined using laboratory abrasion experiments. Changes in spectral reflectance of abrasion samples from the laboratory were compared to field samples that were abraded naturally because of sediment transport. The changes resulting from increased time of abrasion are similar to those observed with increased distance downwind in the dunefield. These results suggest that downwind abrasion can explain the pattern of dune colour in the Muleshoe Dunes, although this does not preclude other possible causes. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
This paper applies multispectral remote sensing techniques to map the Fe-oxide content over the entire Namib sand sea. Spectrometric analysis is applied to field samples to identify the reflectance properties of the dune sands which enable remotely sensed Fe-oxide mapping. The results indicate that the pattern of dune colour in the Namib sand sea arises from the mixing of at least two distinct sources of sand; a red component of high Fe-oxide content (present as a coating on the sand grains) which derives from the inland regions, particularly from major embayments into the Southern African escarpment; and a yellow coastal component of low Fe-oxide content which is brought into the area by northward-moving aeolian transport processes. These major provenances are separated by a mixing zone between 20 kin and 90 kin from the coast throughout the entire length of the sand sea. Previous workers have also recognised a third, fluvial, provenance, but the methodology applied here is not able to map this source as a distinct spectral component. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
A U-series calcrete chronology has been constructed for three Late Quaternary terrace units, termed the D1, D2 and D3 terraces in age descending order, from the Rio Aguas river system of the Sorbas basin, southeast Spain. The D1 terrace formed between 30,300 +/- 4400 year BP and 12,140 +/- 360 year BP, correlating well with the Last Glacial Maximum when rates of sediment supply would have increased greatly, because of higher rates of weathering, reduced vegetation cover and weak soil development. The D2 terrace formed between 12,800 +/- 1100 year BP and 9,600 +/- 530 year BP, correlating well with the Younger Dryas event. The D3 terrace could only be poorly constrained to the early Holocene and no unequivocal cause could be assigned to this period of aggradation. The sedimentology and geomorphology of the D2 terrace suggests, however, that the aggradation of this unit was a response to diapirism/karstic processes occurring within the underlying Messinian gypsum strata and the subsequent damming of the Aguas system. Therefore, despite its coincident occurrence with the Younger Dryas, aggradation of the D2 terrace is unrelated to climate change. The style of this response, controlled predominantly by the characteristics of the underlying bedrock, makes correlating the terrace record of the Aguas with other systems in the Mediterranean unreliable. This study, therefore, highlights the problems of correlating fluvial sequences in regions of variable tectonics, climatic history and bedrock geology and emphasises the need to properly understand the main controls on individual fluvial systems before any attempt is made to correlate their depositional histories. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
A common mode whereby destruction of coastal lowlands occurs is frontal erosion. The edge cliffing, nonetheless, is also an inherent aspect of salt marsh development in many northwest European tidal marshes. Quite a few geomorphologists in the earlier half of the past century recognized such edge erosion as a definite repetitive stage within an autocyclic mode of marsh growth. A shift in research priorities during the past decades (primarily because of coastal management concerns, however) has resulted in an enhanced focus on sediment-flux measurement campaigns on salt marshes. This, somewhat "object-oriented" strategy hindered any further development of the once-established autocyclic growth concept, which virtually has gone into oblivion in recent times. This work makes an attempt to resurrect the notion of autocyclicity by employing its premises to address edge erosion in tidal marshes. Through a review of intertidal morphosedimentology the underlying framework for autocyclicity is envisaged. The phenomenon is demonstrated in the Holocene salt marsh plain of Moricambe basin in NW England that displays several distinct phases of marsh retreat in the form of abandoned clifflets. The suite of abandoned shorelines and terraces has been identified in detailed field mapping that followed analysis of topographic maps and aerial photographs. Vertical trends in marsh plain sediments are recorded in trenches for signs of past marsh front movements. The characteristic sea level history of the area offers an opportunity to differentiate the morphodynamic variability induced in the autocyclic growth of the marsh plain in scenarios of rising and falling sea level and the accompanied change in sediment budget. The ideas gathered are incorporated to construct a conceptual model that links temporal extent of marsh erosion to inner tidal flat sediment budget and sea level tendency. The review leads to recognition of the necessity of adopting an holistic approach in the morphodynamic investigations where marshes should be treated as a component within the "marsh-mudflat system" as each element apparently modulates evolution of the other, with an eventual linkage to subtidal channels. (C) 2009 Elsevier B.V. All rights reserved.