851 resultados para driver information systems, genetic algorithms, prediction theory, transportation
Resumo:
Electronic communications devices intended for government or military applications must be rigorously evaluated to ensure that they maintain data confidentiality. High-grade information security evaluations require a detailed analysis of the device's design, to determine how it achieves necessary security functions. In practice, such evaluations are labour-intensive and costly, so there is a strong incentive to find ways to make the process more efficient. In this paper we show how well-known concepts from graph theory can be applied to a device's design to optimise information security evaluations. In particular, we use end-to-end graph traversals to eliminate components that do not need to be evaluated at all, and minimal cutsets to identify the smallest group of components that needs to be evaluated in depth.
Resumo:
The problem of distributed compression for correlated quantum sources is considered. The classical version of this problem was solved by Slepian and Wolf, who showed that distributed compression could take full advantage of redundancy in the local sources created by the presence of correlations. Here it is shown that, in general, this is not the case for quantum sources, by proving a lower bound on the rate sum for irreducible sources of product states which is stronger than the one given by a naive application of Slepian-Wolf. Nonetheless, strategies taking advantage of correlation do exist for some special classes of quantum sources. For example, Devetak and Winter demonstrated the existence of such a strategy when one of the sources is classical. Optimal nontrivial strategies for a different extreme, sources of Bell states, are presented here. In addition, it is explained how distributed compression is connected to other problems in quantum information theory, including information-disturbance questions, entanglement distillation and quantum error correction.
Resumo:
In a deregulated electricity market, optimizing dispatch capacity and transmission capacity are among the core concerns of market operators. Many market operators have capitalized on linear programming (LP) based methods to perform market dispatch operation in order to explore the computational efficiency of LP. In this paper, the search capability of genetic algorithms (GAs) is utilized to solve the market dispatch problem. The GA model is able to solve pool based capacity dispatch, while optimizing the interconnector transmission capacity. Case studies and corresponding analyses are performed to demonstrate the efficiency of the GA model.
Resumo:
A reliable perception of the real world is a key-feature for an autonomous vehicle and the Advanced Driver Assistance Systems (ADAS). Obstacles detection (OD) is one of the main components for the correct reconstruction of the dynamic world. Historical approaches based on stereo vision and other 3D perception technologies (e.g. LIDAR) have been adapted to the ADAS first and autonomous ground vehicles, after, providing excellent results. The obstacles detection is a very broad field and this domain counts a lot of works in the last years. In academic research, it has been clearly established the essential role of these systems to realize active safety systems for accident prevention, reflecting also the innovative systems introduced by industry. These systems need to accurately assess situational criticalities and simultaneously assess awareness of these criticalities by the driver; it requires that the obstacles detection algorithms must be reliable and accurate, providing: a real-time output, a stable and robust representation of the environment and an estimation independent from lighting and weather conditions. Initial systems relied on only one exteroceptive sensor (e.g. radar or laser for ACC and camera for LDW) in addition to proprioceptive sensors such as wheel speed and yaw rate sensors. But, current systems, such as ACC operating at the entire speed range or autonomous braking for collision avoidance, require the use of multiple sensors since individually they can not meet these requirements. It has led the community to move towards the use of a combination of them in order to exploit the benefits of each one. Pedestrians and vehicles detection are ones of the major thrusts in situational criticalities assessment, still remaining an active area of research. ADASs are the most prominent use case of pedestrians and vehicles detection. Vehicles should be equipped with sensing capabilities able to detect and act on objects in dangerous situations, where the driver would not be able to avoid a collision. A full ADAS or autonomous vehicle, with regard to pedestrians and vehicles, would not only include detection but also tracking, orientation, intent analysis, and collision prediction. The system detects obstacles using a probabilistic occupancy grid built from a multi-resolution disparity map. Obstacles classification is based on an AdaBoost SoftCascade trained on Aggregate Channel Features. A final stage of tracking and fusion guarantees stability and robustness to the result.
Resumo:
A formalism for describing the dynamics of Genetic Algorithms (GAs) using method s from statistical mechanics is applied to the problem of generalization in a perceptron with binary weights. The dynamics are solved for the case where a new batch of training patterns is presented to each population member each generation, which considerably simplifies the calculation. The theory is shown to agree closely to simulations of a real GA averaged over many runs, accurately predicting the mean best solution found. For weak selection and large problem size the difference equations describing the dynamics can be expressed analytically and we find that the effects of noise due to the finite size of each training batch can be removed by increasing the population size appropriately. If this population resizing is used, one can deduce the most computationally efficient size of training batch each generation. For independent patterns this choice also gives the minimum total number of training patterns used. Although using independent patterns is a very inefficient use of training patterns in general, this work may also prove useful for determining the optimum batch size in the case where patterns are recycled.
Resumo:
This thesis deals with the problem of Information Systems design for Corporate Management. It shows that the results of applying current approaches to Management Information Systems and Corporate Modelling fully justify a fresh look to the problem. The thesis develops an approach to design based on Cybernetic principles and theories. It looks at Management as an informational process and discusses the relevance of regulation theory to its practice. The work proceeds around the concept of change and its effects on the organization's stability and survival. The idea of looking at organizations as viable systems is discussed and a design to enhance survival capacity is developed. It takes Ashby's theory of adaptation and developments on ultra-stability as a theoretical framework and considering conditions for learning and foresight deduces that a design should include three basic components: A dynamic model of the organization- environment relationships; a method to spot significant changes in the value of the essential variables and in a certain set of parameters; and a Controller able to conceive and change the other two elements and to make choices among alternative policies. Further considerations of the conditions for rapid adaptation in organisms composed of many parts, and the law of Requisite Variety determine that successful adaptive behaviour requires certain functional organization. Beer's model of viable organizations is put in relation to Ashby's theory of adaptation and regulation. The use of the Ultra-stable system as abstract unit of analysis permits developing a rigorous taxonomy of change; it starts distinguishing between change with in behaviour and change of behaviour to complete the classification with organizational change. It relates these changes to the logical categories of learning connecting the topic of Information System design with that of organizational learning.
Resumo:
The aims of the project were twofold: 1) To investigate classification procedures for remotely sensed digital data, in order to develop modifications to existing algorithms and propose novel classification procedures; and 2) To investigate and develop algorithms for contextual enhancement of classified imagery in order to increase classification accuracy. The following classifiers were examined: box, decision tree, minimum distance, maximum likelihood. In addition to these the following algorithms were developed during the course of the research: deviant distance, look up table and an automated decision tree classifier using expert systems technology. Clustering techniques for unsupervised classification were also investigated. Contextual enhancements investigated were: mode filters, small area replacement and Wharton's CONAN algorithm. Additionally methods for noise and edge based declassification and contextual reclassification, non-probabilitic relaxation and relaxation based on Markov chain theory were developed. The advantages of per-field classifiers and Geographical Information Systems were investigated. The conclusions presented suggest suitable combinations of classifier and contextual enhancement, given user accuracy requirements and time constraints. These were then tested for validity using a different data set. A brief examination of the utility of the recommended contextual algorithms for reducing the effects of data noise was also carried out.
River basin surveillance using remotely sensed data: a water resources information management system
Resumo:
This thesis describes the development of an operational river basin water resources information management system. The river or drainage basin is the fundamental unit of the system; in both the modelling and prediction of hydrological processes, and in the monitoring of the effect of catchment management policies. A primary concern of the study is the collection of sufficient and sufficiently accurate information to model hydrological processes. Remote sensing, in combination with conventional point source measurement, can be a valuable source of information, but is often overlooked by hydrologists, due to the cost of acquisition and processing. This thesis describes a number of cost effective methods of acquiring remotely sensed imagery, from airborne video survey to real time ingestion of meteorological satellite data. Inexpensive micro-computer systems and peripherals are used throughout to process and manipulate the data. Spatial information systems provide a means of integrating these data with topographic and thematic cartographic data, and historical records. For the system to have any real potential the data must be stored in a readily accessible format and be easily manipulated within the database. The design of efficient man-machine interfaces and the use of software enginering methodologies are therefore included in this thesis as a major part of the design of the system. The use of low cost technologies, from micro-computers to video cameras, enables the introduction of water resources information management systems into developing countries where the potential benefits are greatest.
Resumo:
The paper discusses both the complementary factors and contradictions of adoption ERP based systems with enterprise 2.0. ERP is well known as its' efficient business process management. Also the high failure rate the system implementation is famous as well. According to [1], ERP systems could achieve efficient business performance by enabling a standardized business process design, but at a cost of flexibility in operations. However, enterprise 2.0 supports flexible business process management, informal and less structured interactions [3],[4],[21]. Traditional researcher claimed efficiency and flexibility may seem incompatible in that they are different business objectives and may exist in different organizational environments. However, the paper will break traditional norms that combine ERP and enterprise 2.0 in a single enterprise to improve both efficient and flexible operations simultaneously. Based on the multiple cases studies, four cases presented different attitudes on usage ERP systems and enterprise social systems. Based on socio-technical theory, the paper presents in-depth analysis benefits of combination ERP with enterprise 2.0 for these firms.
Resumo:
To be competitive in contemporary turbulent environments, firms must be capable of processing huge amounts of information, and effectively convert it into actionable knowledge. This is particularly the case in the marketing context, where problems are also usually highly complex, unstructured and ill-defined. In recent years, the development of marketing management support systems has paralleled this evolution in informational problems faced by managers, leading to a growth in the study (and use) of artificial intelligence and soft computing methodologies. Here, we present and implement a novel intelligent system that incorporates fuzzy logic and genetic algorithms to operate in an unsupervised manner. This approach allows the discovery of interesting association rules, which can be linguistically interpreted, in large scale databases (KDD or Knowledge Discovery in Databases.) We then demonstrate its application to a distribution channel problem. It is shown how the proposed system is able to return a number of novel and potentially-interesting associations among variables. Thus, it is argued that our method has significant potential to improve the analysis of marketing and business databases in practice, especially in non-programmed decisional scenarios, as well as to assist scholarly researchers in their exploratory analysis. © 2013 Elsevier Inc.
Resumo:
In this article we discuss a possibility to use genetic algorithms in cryptanalysis. We developed and described the genetic algorithm for finding the secret key of a block permutation cipher. In this case key is a permutation of some first natural numbers. Our algorithm finds the exact key’s length and the key with controlled accuracy. Evaluation of conducted experiment’s results shows that the almost automatic cryptanalysis is possible.