915 resultados para disturbance cues
Resumo:
Aim: Determine the frequency and predictors of sleep disorders in boys with Duchenne Muscular Dystrophy (DMD). Method: Cross-sectional study by postal questionnaire. Sleep disturbances were assessed using the Sleep Disturbance Scale for Children (validated on 1157 healthy children). A total sleep score and six sleep disturbance factors representing the most common sleep disorders were computed. Potential associations between pathological scores and personal, medical and environmental factors were assessed. Results: Sixteen of 63 boys (25.4%) had a pathological total sleep score compared with 3% in the general population. The most prevalent sleep disorders were disorders of initiating and maintaining sleep (DIMS) 29.7%, sleep-related breathing disorders 15.6% and sleep hyperhydrosis 14.3%. On multivariate analysis, pathological total sleep scores were associated with the need to be moved by a carer (OR = 9.4; 95%CI: 2.2-40.7; p = 0.003) and being the child of a single-parent family (OR = 7.2; 95%CI: 1.5-35.1; p = 0.015) and DIMS with the need to be moved by a carer (OR = 18.0; 95%CI: 2.9-110.6; p = 0.002), steroid treatment (OR = 7.7; 95%CI: 1.4-44.0; p = 0.021) and being the child of a single-parent family (OR = 7.0; 95%CI: 1.3-38.4; p = 0.025). Conclusion: Sleep disturbances are frequent in boys with DMD and are strongly associated with immobility. Sleep should be systematically assessed in DMD to implement appropriate interventions.
Resumo:
Many blood feeders use adenine nucleotides as cues for locating blood meal. Structure-activity relationship of adenine nucleotides as phagostimulants varies between closely-related species of blood feeders. It is suggested that a preexisting diverse pool of nucleotide-binding proteins present in all living cells, serves as a source of receptor proteins for the gustatory receptors involved in blood detection. It is proposed that the selection of any such nucleotide-binding protein is random.
Resumo:
Choline supplementation improving memory functions in rodents is assumed to increase the synthesis and release of acetylcholine in the brain. We have found that a combined pre- and postnatal supplementation results in long-lasting facilitation of spatial memory in juvenile rats when training was conducted in presence of a local salient cue. The present work was aimed at analysing the effects of peri- and postnatal choline supplementation on spatial abilities of naive adult rats. Rats given a perinatal choline supplementation were trained in various cued procedures of the Morris navigation task when aged 5 months. The treatment had a specific effect of reducing the escape latency of the rats when the platform was at a fixed position in space and surrounded by a suspended cue. This effect was associated with an increased spatial bias when the cue and platform were removed. In this condition, the control rats showed impaired spatial discrimination following the removal of the target cue, most likely due to an overshadowing of the distant environmental cues. This impairment was not observed in the treated rats. Further training with the suspended cue at unpredictable places in the pool revealed longer escape latencies in the control than in the treated rats suggesting that this procedure induced a selective perturbation of the normal but not of the treated rats. A special probe trial with the cue at an irrelevant position and no escape platform revealed a significant bias of the control rats toward the cue and of the treated rats toward the uncued spatial escape position. This behavioural dissociation suggests that a salient cue associated with the target induces an alternative "non spatial" guidance strategy in normal rats, with the risk of overshadowing of the more distant spatial cues. In this condition, the choline supplementation facilities a spatial reliance on the cue, that is an overall facilitation of learning a set of spatial relations between several visual cues. As a consequence, the improved escape in presence of the cue is associated with a stronger memory of the spatial position following disappearance of the cue. This and previous observations suggest that a specific spatial attention process relies on the buffering of highly salient visual cues.to facilitate integration of their relative position in the environment.
Resumo:
The role of ecological constraints in promoting sociality is currently much debated. Using a direct-fitness approach, we show this role to depend on the kin-discrimination mechanisms underlying social interactions. Altruism cannot evolve under spatially based discrimination, unless ecological constraints prevent complete dispersal. Increasing constraints enhances both the proportion of philopatric (and thereby altruistic) individuals and the level of altruistic investments conceded in pairwise interactions. Familiarity-based discrimination, by contrast, allows philopatry and altruism to evolve at significant levels even in the absence of ecological constraints. Increasing constraints further enhances the proportion of philopatric (and thereby altruistic) individuals but not the level of altruism conceded. Ecological constraints are thus more likely to affect social evolution in species in which restricted cognitive abilities, large group size, and/or limited period of associative learning force investments to be made on the basis of spatial cues.
Resumo:
Knockout mice lacking the alpha-1b adrenergic receptor were tested in behavioral experiments. Reaction to novelty was first assessed in a simple test in which the time taken by the knockout mice and their littermate controls to enter a second compartment was compared. Then the mice were tested in an open field to which unknown objects were subsequently added. Special novelty was introduced by moving one of the familiar objects to another location in the open field. Spatial behavior and memory were further studied in a homing board test, and in the water maze. The alpha-1b knockout mice showed an enhanced reactivity to new situations. They were faster to enter the new environment, covered longer paths in the open field, and spent more time exploring the new objects. They reacted like controls to modification inducing spatial novelty. In the homing board test, both the knockout mice and the control mice seemed to use a combination of distant visual and proximal olfactory cues, showing place preference only if the two types of cues were redundant. In the water maze the alpha-1b knockout mice were unable to learn the task, which was confirmed in a probe trial without platform. They were perfectly able, however, to escape in a visible platform procedure. These results confirm previous findings showing that the noradrenergic pathway is important for the modulation of behaviors such as reaction to novelty and exploration, and suggest that this is mediated, at least partly, through the alpha-1b adrenergic receptors. The lack of alpha-1b adrenergic receptors in spatial orientation does not seem important in cue-rich tasks but may interfere with orientation in situations providing distant cues only.
Resumo:
CISNE es un sistema de cómputo en paralelo del Departamento de Arquitectura de Computadores y Sistemas Operativos (DACSO). Para poder implementar políticas de ordenacción de colas y selección de trabajos, este sistema necesita predecir el tiempo de ejecución de las aplicaciones. Con este trabajo se pretende proveer al sistema CISNE de un método para predecir el tiempo de ejecución basado en un histórico donde se almacenarán todos los datos sobre las ejecuciones.
Resumo:
For cell morphogenesis, the cell must establish distinct spatial domains at specified locations at the cell surface. Here, we review the molecular mechanisms of cell polarity in the fission yeast Schizosaccharomyces pombe. These are simple rod-shaped cells that form cortical domains at cell tips for cell growth and at the cell middle for cytokinesis. In both cases, microtubule-based systems help to shape the cell by breaking symmetry, providing endogenous spatial cues to position these sites. The plus ends of dynamic microtubules deliver polarity factors to the cell tips, leading to local activation of the GTPase cdc42p and the actin assembly machinery. Microtubule bundles contribute to positioning the division plane through the nucleus and the cytokinesis factor mid1p. Recent advances illustrate how the spatial and temporal regulation of cell polarization integrates many elements, including historical landmarks, positive and negative controls, and competition between pathways.
Resumo:
National inflation rates reflect domestic and international (regional and global) influences. The relative importance of these components remains a controversial empirical issue. We extend the literature on inflation co-movement by utilising a dynamic factor model with stochastic volatility to account for shifts in the variance of inflation and endogenously determined regional groupings. We find that most of inflation variability is explained by the country specific disturbance term. Nevertheless, the contribution of the global component in explaining industrialised countries’ inflation rates has increased over time.
Resumo:
Sound localization relies on the analysis of interaural time and intensity differences, as well as attenuation patterns by the outer ear. We investigated the relative contributions of interaural time and intensity difference cues to sound localization by testing 60 healthy subjects: 25 with focal left and 25 with focal right hemispheric brain damage. Group and single-case behavioural analyses, as well as anatomo-clinical correlations, confirmed that deficits were more frequent and much more severe after right than left hemispheric lesions and for the processing of interaural time than intensity difference cues. For spatial processing based on interaural time difference cues, different error types were evident in the individual data. Deficits in discriminating between neighbouring positions occurred in both hemispaces after focal right hemispheric brain damage, but were restricted to the contralesional hemispace after focal left hemispheric brain damage. Alloacusis (perceptual shifts across the midline) occurred only after focal right hemispheric brain damage and was associated with minor or severe deficits in position discrimination. During spatial processing based on interaural intensity cues, deficits were less severe in the right hemispheric brain damage than left hemispheric brain damage group and no alloacusis occurred. These results, matched to anatomical data, suggest the existence of a binaural sound localization system predominantly based on interaural time difference cues and primarily supported by the right hemisphere. More generally, our data suggest that two distinct mechanisms contribute to: (i) the precise computation of spatial coordinates allowing spatial comparison within the contralateral hemispace for the left hemisphere and the whole space for the right hemisphere; and (ii) the building up of global auditory spatial representations in right temporo-parietal cortices.
Resumo:
El projecte exposat té com a propòsit definir i implementar un model de simulació basat en la coordinació i assignació dels serveis d’emergència en accidents de trànsit. La definició del model s’ha realitzat amb l’ús de les Xarxes de Petri Acolorides i la implementació amb el software Rockwell Arena 7.0. El modelatge de la primera simulació ens mostra un model teòric basat en cues mentre que el segon, mostra un model més complet i real gràcies a la connexió mitjançant la plataforma Corba a una base de dades amb informació geogràfica de les flotes i de les rutes. Com a resultat de l’estudi i amb l’ajuda de GoogleEarth, podem realitzar simulacions gràfiques per veure els accidents generats, les flotes dels serveis i el moviment dels vehicles des de les bases fins als accidents.
Resumo:
Rats were treated postnatally (PND 5-16) with BSO (l-buthionine-(S,R)-sulfoximine) in an animal model of schizophrenia based on transient glutathione deficit. The BSO treated rats were impaired in patrolling a maze or a homing table when adult, yet demonstrated preserved escape learning, place discrimination and reversal in a water maze task [37]. In the present work, BSO rats' performance in the water maze was assessed in conditions controlling for the available visual cues. First, in a completely curtained environment with two salient controlled cues, BSO rats showed little accuracy compared to control rats. Secondly, pre-trained BSO rats were impaired in reaching the familiar spatial position when curtains partially occluded different portions of the room environment in successive sessions. The apparently preserved place learning in a classical water maze task thus appears to require the stability and the richness of visual landmarks from the surrounding environment. In other words, the accuracy of BSO rats in place and reversal learning is impaired in a minimal cue condition or when the visual panorama changes between trials. However, if the panorama remains rich and stable between trials, BSO rats are equally efficient in reaching a familiar position or in learning a new one. This suggests that the BSO accurate performance in the water maze does not satisfy all the criteria for a cognitive map based navigation on the integration of polymodal cues. It supports the general hypothesis of a binding deficit in BSO rats.
Resumo:
Using event-related potentials (ERPs), we investigated the neural response associated with preparing to switch from one task to another. We used a cued task-switching paradigm in which the interval between the cue and the imperative stimulus was varied. The difference between response time (RT) to trials on which the task switched and trials on which the task repeated (switch cost) decreased as the interval between cue and target (CTI) was increased, demonstrating that subjects used the CTI to prepare for the forthcoming task. However, the RT on repeated-task trials in blocks during which the task could switch (mixed-task blocks) were never as short as RTs during single-task blocks (mixing cost). This replicates previous research. The ERPs in response to the cue were compared across three conditions: single-task trials, switch trials, and repeat trials. ERP topographic differences were found between single-task trials and mixed-task (switch and repeat) trials at approximately 160 and approximately 310 msec after the cue, indicative of changes in the underlying neural generator configuration as a basis for the mixing cost. In contrast, there were no topographic differences evident between switch and repeat trials during the CTI. Rather, the response of statistically indistinguishable generator configurations was stronger at approximately 310 msec on switch than on repeat trials. By separating differences in ERP topography from differences in response strength, these results suggest that a reappraisal of previous research is appropriate.
Resumo:
Little is known about the migration of plasma cell precursors to the lymph node medulla. In this issue of Immunity, Fooksman et al. (2010) propose that this migration is largely independent of chemotactic cues but follows a long linear walk of random orientation.
Resumo:
Soil bacteria are heavily consumed by protozoan predators, and many bacteria have evolved defense strategies such as the production of toxic exometabolites. However, the production of toxins is energetically costly and therefore is likely to be adjusted according to the predation risk to balance the costs and benefits of predator defense. We investigated the response of the biocontrol bacterium Pseudomonas fluorescens CHA0 to a common predator, the free-living amoeba Acanthamoeba castellanii. We monitored the effect of the exposure to predator cues or direct contact with the predators on the expression of the phlA, prnA, hcnA, and pltA genes, which are involved in the synthesis of the toxins, 2,4-diacetylphloroglucinol (DAPG), pyrrolnitrin, hydrogen cyanide, and pyoluteorin, respectively. Predator chemical cues led to 2.2-, 2.0-, and 1.2-fold increases in prnA, phlA, and hcnA expression, respectively, and to a 25% increase in bacterial toxicity. The upregulation of the tested genes was related to the antiprotozoan toxicity of the corresponding toxins. Pyrrolnitrin and DAPG had the highest toxicity, suggesting that bacteria secrete a predator-specific toxin cocktail. The response of the bacteria was elicited by supernatants of amoeba cultures, indicating that water-soluble chemical compounds were responsible for induction of the bacterial defense response. In contrast, direct contact of bacteria with living amoebae reduced the expression of the four bacterial toxin genes by up to 50%, suggesting that protozoa can repress bacterial toxicity. The results indicate that predator-prey interactions are a determinant of toxin production by rhizosphere P. fluorescens and may have an impact on its biocontrol potential.