960 resultados para distilled spirits
Resumo:
The purpose of this work was to evaluate the Ti-35Nb-7Zr experimental alloy after surface treatment and soaking in solution body fluid (SBF) to form bonelike apatite. The Ti-35Nb-7Zr alloy was produced from commercially pure materials (Ti, Nb and Zr) by an arc melting furnace. All ingots were submitted to sequences of heat treatment (1100 °C/2 h and water quenching), cold working by swaging procedures and heat treatment (1100 °C/2 h and water quenching). Discs with 13 mm diameter and 3 mm in thickness were cut. The samples were immersed in NaOH aqueous solution with 5 M at 60 °C for 72 h, washed with distilled water and dried at 40 °C for 24 h. After the alkaline treatment, samples were heat treated in both conditions: at 450 and 600 °C for 1 h in an electrical furnace in air. Then, they were soaking in SBF for 24 h to form an apatite layer on the surface. The surfaces were investigated by using scanning electron microscope (SEM), energy dispersive X-ray spectroscopy (EDX), infrared spectroscopy (FTIR) and contact angle measurements. The results indicate that calcium phosphate could form on surface of Ti-35Nb-7Zr experimental alloy. © Springer-Verlag Berlin Heidelberg 2013.
Resumo:
The aim of this study was to evaluate the effects of different light-curing units and resin cement curing types on the bond durability of a feldspathic ceramic bonded to dentin. The crowns of 40 human molars were sectioned, exposing the dentin. Forty ceramic blocks of VITA VM7 were produced according to the manufacturer's recommendations. The ceramic surface was etched with 10% hydrofluoric acid/60s and silanized. The dentin was treated with37% phosphoric acid/15s, and the adhesive was applied. The ceramic blocks were divided and cemented to dentin according to resin cement/RC curing type(dual-and photocured), light-curing unit (halogen light/QTH and LED), and storage conditions (dry and storage/150 days + 12,000 cycles/thermocycling). All blocks were stored in distilled water (37°C/24h) and sectioned (n = 10): G1-QTH + RC Photo, G2-QTH + RC Dual, G3-LED + RC Photo, G4-LED + RC Dual. Groups G5, G6, G7, and G8 were obtained exactly as G1 through G4, respectively, and then stored and thermocycled. Microtensile bond strength tests were performed (EMIC), and data were statistically analyzed by ANOVA and Tukey's test (5%). The bond strength values (MPa) were: G1-12.95 (6.40)ab; G2-12.02 (4.59)ab; G3-13.09 (5.62)ab; G4-15.96 (6.32)a; G5-6.22 (5.90)c; G6-9.48 (5.99)bc; G7-12.78 (11.30)ab; and G8-8.34 (5.98)bc. The same superscript letters indicate no significant differences. Different light-curing units affected the bond strength betweenceramic cemented to dentin when the photocured cement was used, and only after aging (LED>QTH). There was no difference between the effects of dual-and photo-cured resin-luting agents on the microtensile bond strength of the cement used in this study.
Resumo:
The aim of this study was to evaluate the compressive strength of microhybrid (Filtek™ Z250) and nanofilled (Filtek™ Supreme XT) composite resins photo-activated with two different light guide tips, fiber optic and polymer, coupled with one LED. The power density was 653 mW cm -2 when using the fiber optic light tip and 596 mW cm-2 with the polymer. After storage in distilled water at 37 ± 2 °C for seven days, the samples were subjected to mechanical testing of compressive strength in an EMIC universal mechanical testing machine with a load cell of 5 kN and speed of 0.5 mm min-1. The statistical analysis was performed using ANOVA with a confidence interval of 95% and Tamhane's test. The results showed that the mean values of compressive strength were not influenced by the different light tips (p > 0.05). However, a statistical difference was observed (p < 0.001) between the microhybrid composite resin photo-activated with the fiber optic light tip and the nanofilled composite resin. Based on these results, it can be concluded that microhybrid composite resin photo-activated with the fiber optic light tip showed better results than nanofilled, regardless of the tip used, and the type of the light tip did not influence the compressive strength of either composite. Thus, the presented results suggest that both the fiber optic and polymer light guide tips provide adequate compressive strength to be used to make restorations. However, the fiber optic light tip associated with microhybrid composite resin may be an interesting option for restorations mainly in posterior teeth. © 2013 Astro Ltd.
Resumo:
The aim of the present study was to assess the shear bond strength between a heat-polymerized denture base resin and acrylic resin teeth after immersion in different denture cleansers by simulating a 180-day use. Two acrylic teeth (Biotone, Biotone IPN, Dentsply Ind. e Com., Rio de Janeiro, RJ, Brazil) were chosen for bonding to a heat-polymerized denture base resin (Lucitone 550- Dentsply Ind. e Com., Rio de Janeiro, RJ, Brazil). Eighty specimens were produced and divided into eight groups (n=10) according to their experimental condition (distilled water, 2% chlorhexidine digluconate, 1% sodium hypochlorite and Corega Tabs). Shear bond strength tests (MPa) were performed with a universal testing machine at a crosshead speed of 0.5 mm/min. Data were analyzed by two-way analysis of variance (ANOVA) and Student-Newman-Keuls' multiple comparisons post hoc analysis (α=.05). The shear bond strength results revealed statistically significant differences between the groups. For the Biotone IPN tooth, significantly lower shear bond strength values were found for the group immersed in sodium-perborate solution (4.48±2.18 MPa) than for the group immersed in distilled water (control group) (10.83±1.84 MPa). For Biotone, significantly higher bond strength values (10.04±3.28 MPa) were found for the group immersed in Corega Tabs than for the control group (5.45±2.93 MPa). The immersion in denture cleanser solutions was more detrimental to the conventional acrylic denture tooth (Biotone) than to the highly cross-linked denture tooth (Biotone IPN). However, this effect was not observed for the groups immersed in Corega Tabs solution, regardless of the type of denture tooth. © 2013 Elsevier Ltd.
Resumo:
The aim of the present study was to evaluate the efficacy of QMiX, SmearClear, and 17% EDTA for the debris and smear layer removal from the root canal and its effects on the push-out bond strength of an epoxy-based sealer by scanning electron microscopy (SEM). Forty extracted human canines (n=10) were assigned to the following final rinse protocols: G1-distilled water (control), G2-17% EDTA, G3-SmearClear, and G4-QMiX. The specimens were submitted to a SEM analysis to evaluate the presence of debris and smear layer, respectively, in the apical or cervical segments. In sequence, forty extracted human maxillary canines with the root canals instrumented were divided into four groups (n=10) similar to the SEM analysis study. After the filling with AH Plus, the roots were transversally sectioned to obtain dentinal slices. The specimens were submitted to a push-out bond strength test using an electromechanical testing machine. The statistical analysis for the SEM and push-out bond strength studies were performed using the Kruskal-Wallis and Dunn tests (α=5%). There was no difference among the G2, G3, and G4 efficacy in removing the debris and smear layer (P>0.05). The efficacy of these groups was superior to the control group. The push-out bond strength values of G2, G3, and G4 were superior to the control group. The ability to remove the debris and smear layer by SmearClear and QMiX was as effective as the 17% EDTA. The final rinse with these solutions promoted similar push-out bond strength values. © 2013 Wiley Periodicals, Inc.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This study aimed to evaluate the influence of irrigation needle gauge and design, and the final root canal diameter on the apical cleaning efficacy. Twelve human mandibular incisors were used. At different stages of root canal widening (sizes 20, 30 and 40 K-files), root canals were filled with radiopaque contrast medium. Four different needles were evaluated: 23G with side opening, 22G with apical opening, 30G with side opening and 30G with apical opening. Irrigation was carried out with 2 mL distilled water. The same tooth was radiographed with a digital system several times to assess the four types of needle in those three stages of canal widening. Pre-irrigation (canals filled with contrast) and post-irrigation (canals with remaining contrast) images were submitted to digital subtraction using the Adobe Photoshop CS4 program. Pre-irrigation (filled with contrast) and subtracted (cleaned by irrigation) areas were outlined by a trained and blinded operator using the Image Tool 3.0 software. Their ratio was calculated to express the percentage of apical cleaning in each stage of canal widening (sizes 20, 30 and 40 K-files) with each of the four needles. Data obtained were subjected to one-way ANOVA and Tukey's tests. The 30G needles with side and apical opening promoted better apical cleaning at all stages of root canal widening (p<0.05). In conclusion, smaller diameter needles were more efficacious in cleaning the apical third of the root canals, regardless of their design.
Resumo:
Eucalyptus is the most important plantation forest species in Brazil. Wilt and canker caused by Ceratocystis fimbriata on eucalyptus were first reported in 1998 in plantations of an E. grandis × E. urophylla hybrid in southern Bahia, Brazil. This work aimed at studying the reaction of different eucalyptus genotypes after inoculation with C. fimbriata isolates, in order to find a possible source of resistance. The study included four isolates of Ceratocystis collected from eucalyptus in different regions. One disc of fungal mycelium with 1-cm-diameter (from colonies growing for 10 days on malt extract agar medium-MEA) was inoculated on the stem of thus injured eucalyptus plants (six months old). A cotton wool moistened with sterile distilled water was wrapped with plastic film. Control plants were inoculated with discs of MEA without fungal colonies. The inoculated plants were kept in a greenhouse. Wilt symptoms were observed 90 days after inoculation. The seedlings were cut in the longitudinal direction of the stem in order to observe the colonization of fungus in the plant xylem. We tested twenty eucalyptus genotypes, but only five showed resistance to all isolates of Ceratocystis, belonging to different species of Eucalyptus: E. urophylla (C2 and C9), E. grandis (C3), E. saligna (C6 and C13) Most E. gramdis genotypes were more susceptible to all four fungal isolates. These results support future studies related to eucalyptus resistance to Ceratocystis.
Resumo:
Insecticide potential and efficaciousness of vegetal extracts concentrations from six botanic families in three different modes were analyzed on the nymphs of the silverleaf whitefly Bemisia tabaci (Genn. 1889) on a tomato plantation Lycopersicon esculentum Mill. Nymph breeding was kept in cherry tomato shrubs. Test solutions were obtained from successive extractions with ethanol and evaporation in a rotary evaporator. Tests consisted of 10 solutions in four concentrations (500; 1,000; 1,500 and 3,000 μg/mL) and control treatment (distilled water + 1% DMSO) under three different modes of activity, namely, contact, translaminar and systemic. Experimental design was totally randomized with four repetitions and eleven treatments. Means were compared by Scott-Knott test at 5% probability and lethal concentrations (CL50) were calculated by POLO. In the case of contact activity mode, all extracts had efficiency above 50% with the highest concentration (3,000 μg/mL) in which the highest efficiency for all extracts tested was verified. There was a need for dose increase in translaminar activity mode for similar results, whereas in the case of systemic activity the best performance was obtained with extracts of Nerium oleander, Derris amazonica and Ipomoea carnea. Extracts of the last two caused a higher percentage when compared with that of other extracts in all activity modes lower than CL50.
Resumo:
The application of fungicides in the aerial organs is control strategy to macrospora spot caused by fungus Stenocarpella macrospora. The objective of this study was to determine the sensitivity of S. macrospora to fungicides by inhibition of mycelial growth (MG) and conidial germination (CG). It was eval uated 12 fungicides belonging to the chemical groups of the benzimidazoles, triazoles and strobilurins, six concentrations and two isolates of the fungus (SC and MT). The fungicides were diluted in sterile distilled water and added to the culture medium of potato dextrose agar (mycelium) and water-agar (spore) after sterilization. The percentage of inhibition of MC and CG was calculed in comparison with control, estimating of 50% inhibitory concentration (IC50). The fungicides tested were effective in inhibiting the MC. The IC50 was less than 1 ppm for all fungicides. There was no difference between isolates. The inhibition of CG had higher fungitoxicity strobilurins, and the IC50 was between 0.0035 and 0.03 ppm, and the isolated SC showed the higher sensitivity to the fungicides. The IC50 values obtained for fungicides and specific S. macrospora will be useful in monitoring the sensitivity of the fungus, especially in regions with intense demand for fungicides in corn.
Resumo:
Endocrine disruptors (EDs) are widespread in the environment, especially aquatic systems, and cause dangerous effects on wildlife and humans. This work was aimed to assess the capacity of radish (Raphanus sativus L.) and ryegrass (Lolium perenne L.) seedlings to tolerate and remove two combinations of EDs containing bisphenol A (BPA), 17α-ethynilestradiol (EE2), and linuron from four aqueous media: distilled water, a solution of natural organic matter (NOM), a lake water and a river water. Seeds of the two species were germinated in each contaminated medium and, at the end of germination, the seedling growth was evaluated by biometric measurements and residual EDs were quantified by chromatographic analysis. Biometric measurements revealed that the phytotoxicity of the two combinations of EDs depended on the medium used. Radish showed a discrete tolerance in distilled water and lake water but was inhibited in the solution of NOM and river water. Ryegrass was negatively affected mainly in river water. The concentration of each ED appeared significantly reduced in all media in the presence of seedlings of both species, but not in the blanks without plants. In 5 days, radish removed up to 88% of BPA, 100% of EE2 and 42% of linuron, and in 6 days ryegrass removed up to 92% of BPA, 74% of EE2 and 16% of linuron. The considerable removal capacity of radish and ryegrass in all media tested encourages the use of phytoremediation to remove EDs from waters. © 2013 Copyright Taylor and Francis Group, LLC.
Resumo:
In this study, nanocomposites of PLA and organoclays Cloisite 20A and Cloisite 30B were prepared by the melt intercalation method and the obtained samples were characterized by transmission electron microscopy (TEM). Since composting is an important proposal to the final disposal of biopolymers, the influence of clays on the hydrolytic degradation process of PLA was evaluated by visual analysis and monitoring of molecular weight after periods of 15 and 30 days of degradation in compost. After degradation of the materials in composting environment, the evaluation of cytotoxic, genotoxic and mutagenic effects of compost aqueous extract was carried out using a bioassay with Allium cepa as test organism. The TEM micrographs permitted the observation of different levels of dispersion, including exfoliated regions. In the evaluation of hydrolytic degradation it was noted that the presence of organoclays can decrease the rate of degradation possibly due to the barrier effect of clay layers and/or the higher degree of crystallinity in the nanocomposite samples. Nevertheless, even in the case of nanocomposites, the molecular weight reduction was significant, indicating that the composting process is favorable to the chain scission of PLA in studied materials. In the analysis performed by the bioassay using A. cepa as test organism, it was found that after degradation of the PLA and its nanocomposites the aqueous extract of compost samples induced a decreasing in the mitotic index and an increasing in the induction of chromosomal abnormalities. These results were statistically significant in relation to the negative control (distilled water). By comparing the results obtained for the nanocomposites in relative to pure polymer, there were no statistically significant differences. The types of the observed chromosomal aberrations indicated a possible genotoxic effect of the materials, which may be related to an aneugenic action of PLA degradation products. © 2013 Springer Science+Business Media New York.
Resumo:
The invasive behavior of melaleuca (Melaleuca quinquenervia) plants in wetlands is due to its aggressive regeneration strategy, which is based on its seeds germination performance. Understanding of the eco-physiological aspects of the seed germination in melaleuca plants may significantly contribute for the development of management strategies. The objective of this research was to learn how the germination of M. quinquenervia seeds are affected by light and temperature. Melaleuca seeds were placed on filter paper moistened with 12 ml of distilled water at temperatures between 10 and 45°C. Germination was evaluated in dark and light conditions. Seed germination, first count of seed germination (seven days), germination speed index and germination mean time were determined up to 40 days after seeding, when germination had ceased in most of the treatments. After that period, the seeds were transferred to conditions of 30°C and light, which was found to be ideal in the previous phase. Seed germination was daily evaluated up to 63 days when it was again observed no longer to occur. The treatment repetitions were distributed in the growth-chamber according to a completely randomized design in a factorial scheme (eight temperatures x two light conditions) and four repetitions. The data were submitted to analysis of variance with the F test and the means were adjusted to polynomial and non linear regression models. The highest seed germination performance was observed to take place under conditions of 27.3°C with light. The temperatures of 35 and 40°C in the dark induced thermal inhibition of seed germination. The temperature of 45°C was lethal to the seeds.
Resumo:
The effects of soybean and castorbean meals were evaluated separately, and in combinations at different ratios, as substrates for lipase production by Botryosphaeria ribis EC-01 in submerged fermentation using only distilled water. The addition of glycerol analytical grade (AG) and glycerol crude (CG) to soybean and castorbean meals separately and in combination, were also examined for lipase production. Glycerol-AG increased enzyme production, whereas glycerol-CG decreased it. A 24 factorial design was developed to determine the best concentrations of soybean meal, castorbean meal, glycerol-AG, and KH2PO4 to optimize lipase production by B. ribis EC-01. Soybean meal and glycerol-AG had a significant effect on lipase production, whereas castorbean meal did not. A second treatment (22 factorial design central composite) was developed, and optimal lipase production (4,820 U/g of dry solids content (ds)) was obtained when B. ribis EC-01 was grown on 0.5 % (w/v) soybean meal and 5.2 % (v/v) glycerol in distilled water, which was in agreement with the predicted value (4,892 U/g ds) calculated by the model. The unitary cost of lipase production determined under the optimized conditions developed ranged from US$0.42 to 0.44 based on nutrient costs. The fungal lipase was immobilized onto Celite and showed high thermal stability and was used for transesterification of soybean oil in methanol (1:3) resulting in 36 % of fatty acyl alkyl ester content. The apparent K m and V max were determined and were 1.86 mM and 14.29 μmol min -1 mg-1, respectively. © 2013 Springer Science+Business Media New York.
Resumo:
Aim: To evaluate antibiofilm activity against Enterococcus faecalis, pH and solubility of AH Plus, Sealer 26, Epiphany SE, Sealapex, Activ GP, MTA Fillapex (MTA-F) and an experimental MTA-based Sealer (MTA-S). Methodology: Sealer samples were manipulated and stored for 2 or 7 days. Prepared sealers were evaluated by a modified direct contact test (DCT) for 5 h, 10 h or 15 h with biofilm previously induced on bovine dentine for 14 days. In the control group, the biofilm was not exposed to the sealers. The number of colony-forming units (CFU mL-1) in the remaining biofilm was determined. Sealer solubility was assessed by the percentage of mass loss after 15 h of immersion in distilled water. Sealer pH was measured at 5 h, 10 h and 15 h. Statistical analysis was performed using Kruskal-Wallis and Dunn or anova and Tamhane's T2 tests, at 5% significance. Results: At 2 days post-manipulation, the DCT showed that Sealapex and MTA-F were associated with a reduction in the number of bacteria in all 3 contact periods evaluated, compared with the control group (P < 0.05). At 7 days, Sealapex had the greatest antibiofilm action at 10 h and 15 h. Sealapex had the highest pH values 2 and 7 days post-manipulation. Regarding the solubility, at 2 days the highest values were observed for MTA-F, MTA-S, Sealapex and Activ GP (P < 0.05). At 7 days, MTA-S and MTA-F had greater solubility than the other materials (P < 0.05). AH Plus had the lowest solubility for both post-manipulation periods (P < 0.05). Conclusion: Sealapex and MTA-F were associated with a reduction in the number of bacteria in biofilms and had greater solubility. The high solubility and pH may be related to the antibacterial activity of these materials. © 2012 International Endodontic Journal.