873 resultados para decision support systems (DSS)
Resumo:
Our research described in this paper identifies a three part premise relating to the spyware paradigm. Firstly the data suggests spyware is proliferating at an exponential rate. Secondly ongoing research confirms that spyware produces many security risks – including that of privacy/confidentiality breaches via illicit data collection and reporting. Thirdly, anti-spyware controls are improving but are still considered problematic for several reasons. Our research then concludes that control measures to counter this very significant challenge should merit compliance auditing – and this auditing may effectively target the vital message passing performed by all illicit data collection spyware. Our research then evolves into an experiment involving the design and implementation of a software audit tool to conduct the desired compliance auditing. The software audit tool is positioned at the protected network’s gateway. The software audit tool uses ‘phone-home’ IP addresses as spyware signatures to detect the presence of the offending software. The audit tool also has the capability to differentiate legitimate message passing software from that produced by spyware – and ‘learn’ both new spyware signatures and new legitimate message passing profiles. The testing stage of the software has proven successful – albeit using very limited levels of network message passing variety and frequency.
Resumo:
The evaluation and selection of industrial projects before investment decision is customarily done using marketing, technical and financial information. Subsequently, environmental impact assessment and social impact assessment are carried out mainly to satisfy the statutory agencies. Because of stricter environment regulations in developed and developing countries, quite often impact assessment suggests alternate sites, technologies, designs, and implementation methods as mitigating measures. This causes considerable delay to complete project feasibility analysis and selection as complete analysis requires to be taken up again and again till the statutory regulatory authority approves the project. Moreover, project analysis through above process often results sub-optimal project as financial analysis may eliminate better options, as more environment friendly alternative will always be cost intensive. In this circumstance, this study proposes a decision support system, which analyses projects with respect to market, technicalities, and social and environmental impact in an integrated framework using analytic hierarchy process, a multiple-attribute decision-making technique. This not only reduces duration of project evaluation and selection, but also helps select optimal project for the organization for sustainable development. The entire methodology has been applied to a cross-country oil pipeline project in India and its effectiveness has been demonstrated. © 2005 Elsevier B.V. All rights reserved.
Resumo:
Product design and sourcing decisions are among the most difficult and important of all decisions facing multinational manufacturing companies, yet associated decision support and evaluation systems tend to be myopic in nature. Design for manufacture and assembly techniques, for example, generally focuses on manufacturing capability and ignores capacity although both should be considered. Similarly, most modelling and evaluation tools available to examine the performance of various solution and improvement techniques have a narrower scope than desired. A unique collaboration, funded by the US National Science Foundation, between researchers in the USA and the UK currently addresses these problems. This paper describes a technique known as Design For the Existing Environment (DFEE) and an holistic evaluation system based on enterprise simulation that was used to demonstrate the business benefits of DFEE applied in a simple product development and manufacturing case study. A project that will extend these techniques to evaluate global product sourcing strategies is described along with the practical difficulties of building an enterprise simulation on the scale and detail required.
Resumo:
Many local authorities (LAs) are currently working to reduce both greenhouse gas emissions and the amount of municipal solid waste (MSW) sent to landfill. The recovery of energy from waste (EfW) can assist in meeting both of these objectives. The choice of an EfW policy combines spatial and non-spatial decisions which may be handled using Multi-Criteria Analysis (MCA) and Geographic Information Systems (GIS). This paper addresses the impact of transporting MSW to EfW facilities, analysed as part of a larger decision support system designed to make an overall policy assessment of centralised (large-scale) and distributed (local-scale) approaches. Custom-written ArcMap extensions are used to compare centralised versus distributed approaches, using shortest-path routing based on expected road speed. Results are intersected with 1-kilometre grids and census geographies for meaningful maps of cumulative impact. Case studies are described for two counties in the United Kingdom (UK); Cornwall and Warwickshire. For both case study areas, centralised scenarios generate more traffic, fuel costs and emitted carbon per tonne of MSW processed.
Resumo:
Artifact selection decisions typically involve the selection of one from a number of possible/candidate options (decision alternatives). In order to support such decisions, it is important to identify and recognize relevant key issues of problem solving and decision making (Albers, 1996; Harris, 1998a, 1998b; Jacobs & Holten, 1995; Loch & Conger, 1996; Rumble, 1991; Sauter, 1999; Simon, 1986). Sauter classifies four problem solving/decision making styles: (1) left-brain style, (2) right-brain style, (3) accommodating, and (4) integrated (Sauter, 1999). The left-brain style employs analytical and quantitative techniques and relies on rational and logical reasoning. In an effort to achieve predictability and minimize uncertainty, problems are explicitly defined, solution methods are determined, orderly information searches are conducted, and analysis is increasingly refined. Left-brain style decision making works best when it is possible to predict/control, measure, and quantify all relevant variables, and when information is complete. In direct contrast, right-brain style decision making is based on intuitive techniques—it places more emphasis on feelings than facts. Accommodating decision makers use their non-dominant style when they realize that it will work best in a given situation. Lastly, integrated style decision makers are able to combine the left- and right-brain styles—they use analytical processes to filter information and intuition to contend with uncertainty and complexity.
Resumo:
Artifact selection decisions typically involve the selection of one from a number of possible/candidate options (decision alternatives). In order to support such decisions, it is important to identify and recognize relevant key issues of problem solving and decision making (Albers, 1996; Harris, 1998a, 1998b; Jacobs & Holten, 1995; Loch & Conger, 1996; Rumble, 1991; Sauter, 1999; Simon, 1986). Sauter classifies four problem solving/decision making styles: (1) left-brain style, (2) right-brain style, (3) accommodating, and (4) integrated (Sauter, 1999). The left-brain style employs analytical and quantitative techniques and relies on rational and logical reasoning. In an effort to achieve predictability and minimize uncertainty, problems are explicitly defined, solution methods are determined, orderly information searches are conducted, and analysis is increasingly refined. Left-brain style decision making works best when it is possible to predict/control, measure, and quantify all relevant variables, and when information is complete. In direct contrast, right-brain style decision making is based on intuitive techniques—it places more emphasis on feelings than facts. Accommodating decision makers use their non-dominant style when they realize that it will work best in a given situation. Lastly, integrated style decision makers are able to combine the left- and right-brain styles—they use analytical processes to filter information and intuition to contend with uncertainty and complexity.
Resumo:
Although the importance of dataset fitness-for-use evaluation and intercomparison is widely recognised within the GIS community, no practical tools have yet been developed to support such interrogation. GeoViQua aims to develop a GEO label which will visually summarise and allow interrogation of key informational aspects of geospatial datasets upon which users rely when selecting datasets for use. The proposed GEO label will be integrated in the Global Earth Observation System of Systems (GEOSS) and will be used as a value and trust indicator for datasets accessible through the GEO Portal. As envisioned, the GEO label will act as a decision support mechanism for dataset selection and thereby hopefully improve user recognition of the quality of datasets. To date we have conducted 3 user studies to (1) identify the informational aspects of geospatial datasets upon which users rely when assessing dataset quality and trustworthiness, (2) elicit initial user views on a GEO label and its potential role and (3), evaluate prototype label visualisations. Our first study revealed that, when evaluating quality of data, users consider 8 facets: dataset producer information; producer comments on dataset quality; dataset compliance with international standards; community advice; dataset ratings; links to dataset citations; expert value judgements; and quantitative quality information. Our second study confirmed the relevance of these facets in terms of the community-perceived function that a GEO label should fulfil: users and producers of geospatial data supported the concept of a GEO label that provides a drill-down interrogation facility covering all 8 informational aspects. Consequently, we developed three prototype label visualisations and evaluated their comparative effectiveness and user preference via a third user study to arrive at a final graphical GEO label representation. When integrated in the GEOSS, an individual GEO label will be provided for each dataset in the GEOSS clearinghouse (or other data portals and clearinghouses) based on its available quality information. Producer and feedback metadata documents are being used to dynamically assess information availability and generate the GEO labels. The producer metadata document can either be a standard ISO compliant metadata record supplied with the dataset, or an extended version of a GeoViQua-derived metadata record, and is used to assess the availability of a producer profile, producer comments, compliance with standards, citations and quantitative quality information. GeoViQua is also currently developing a feedback server to collect and encode (as metadata records) user and producer feedback on datasets; these metadata records will be used to assess the availability of user comments, ratings, expert reviews and user-supplied citations for a dataset. The GEO label will provide drill-down functionality which will allow a user to navigate to a GEO label page offering detailed quality information for its associated dataset. At this stage, we are developing the GEO label service that will be used to provide GEO labels on demand based on supplied metadata records. In this presentation, we will provide a comprehensive overview of the GEO label development process, with specific emphasis on the GEO label implementation and integration into the GEOSS.
Resumo:
One of the aims of the Science and Technology Committee (STC) of the Group on Earth Observations (GEO) was to establish a GEO Label- a label to certify geospatial datasets and their quality. As proposed, the GEO Label will be used as a value indicator for geospatial data and datasets accessible through the Global Earth Observation System of Systems (GEOSS). It is suggested that the development of such a label will significantly improve user recognition of the quality of geospatial datasets and that its use will help promote trust in datasets that carry the established GEO Label. Furthermore, the GEO Label is seen as an incentive to data providers. At the moment GEOSS contains a large amount of data and is constantly growing. Taking this into account, a GEO Label could assist in searching by providing users with visual cues of dataset quality and possibly relevance; a GEO Label could effectively stand as a decision support mechanism for dataset selection. Currently our project - GeoViQua, - together with EGIDA and ID-03 is undertaking research to define and evaluate the concept of a GEO Label. The development and evaluation process will be carried out in three phases. In phase I we have conducted an online survey (GEO Label Questionnaire) to identify the initial user and producer views on a GEO Label or its potential role. In phase II we will conduct a further study presenting some GEO Label examples that will be based on Phase I. We will elicit feedback on these examples under controlled conditions. In phase III we will create physical prototypes which will be used in a human subject study. The most successful prototypes will then be put forward as potential GEO Label options. At the moment we are in phase I, where we developed an online questionnaire to collect the initial GEO Label requirements and to identify the role that a GEO Label should serve from the user and producer standpoint. The GEO Label Questionnaire consists of generic questions to identify whether users and producers believe a GEO Label is relevant to geospatial data; whether they want a single "one-for-all" label or separate labels that will serve a particular role; the function that would be most relevant for a GEO Label to carry; and the functionality that users and producers would like to see from common rating and review systems they use. To distribute the questionnaire, relevant user and expert groups were contacted at meetings or by email. At this stage we successfully collected over 80 valid responses from geospatial data users and producers. This communication will provide a comprehensive analysis of the survey results, indicating to what extent the users surveyed in Phase I value a GEO Label, and suggesting in what directions a GEO Label may develop. Potential GEO Label examples based on the results of the survey will be presented for use in Phase II.
Resumo:
In India, more than one third of the population do not currently have access to modern energy services. Biomass to energy, known as bioenergy, has immense potential for addressing India’s energy poverty. Small scale decentralised bioenergy systems require low investment compared to other renewable technologies and have environmental and social benefits over fossil fuels. Though they have historically been promoted in India through favourable policies, many studies argue that the sector’s potential is underutilised due to sustainable supply chain barriers. Moreover, a significant research gap exists. This research addresses the gap by analysing the potential sustainable supply chain risks of decentralised small scale bioenergy projects. This was achieved through four research objectives, using various research methods along with multiple data collection techniques. Firstly, a conceptual framework was developed to identify and analyse these risks. The framework is founded on existing literature and gathered inputs from practitioners and experts. Following this, sustainability and supply chain issues within the sector were explored. Sustainability issues were collated into 27 objectives, and supply chain issues were categorised according to related processes. Finally, the framework was validated against an actual bioenergy development in Jodhpur, India. Applying the framework to the action research project had some significant impacts upon the project’s design. These include the development of water conservation arrangements, the insertion of auxiliary arrangements, measures to increase upstream supply chain resilience, and the development of a first aid action plan. More widely, the developed framework and identified issues will help practitioners to take necessary precautionary measures and address them quickly and cost effectively. The framework contributes to the bioenergy decision support system literature and the sustainable supply chain management field by incorporating risk analysis and introducing the concept of global and organisational sustainability in supply chains. The sustainability issues identified contribute to existing knowledge through the exploration of a small scale and developing country context. The analysis gives new insights into potential risks affecting the whole bioenergy supply chain.
Resumo:
При векторном подходе задача принятия решений посредством декомпозиции свойств альтернатив представляется иерархической системой критериев. Возникает проблема обратного перехода к оценке и сравнению альтернатив в целом. Эта проблема предполагает решение задачи композиции критериев по уровням иерархии. Задача решается методом вложенных скалярных сверток.
Resumo:
Представлен метод последовательного снижения размерности признакового пространства, который позволяет упростить процедуру порядковой классификации многокритериальных альтернатив и уменьшить ее трудоемкость.
Resumo:
Представлено формальное описание многомерной модели данных, реализованной в программном комплексе METAS BI-Platform. В статью включено описание объектов многомерной модели (измерений и множеств измерений и т.д.), их свойств и организации, а также операций, выполняемых над ними. Описаны методы агрегации многомерных данных, позволяющие эффективно агрегировать массивы числовых показателей. Программный комплекс METAS BI-Platform предназначен для многомерного анализа данных, получаемых из гетерогенных источников, и позволяет упростить разработку BI-приложений. Программный комплекс представляет собой многоуровневое приложение с архитектурой «Клиент-сервер». Каждый уровень комплекса соответствует степени абстракции данных. На самом низком уровне расположены драйверы доступа к специфическим физическим источникам данных. Следующий уровень – уровень виртуальной СУБД, позволяющей осуществлять унифицированный доступ к данным, что избавляет от необходимости учитывать специфику конкретных СУБД при разработке BI-приложений. Реализован программный интерфейс комплекса (API). В распоряжение разработчиков предоставляется набор готовых компонентов, которые могут быть использованы при создании BI-приложений. Это позволяет разрабатывать на основе комплекса BI-приложения, отвечающие современным требованиям, предъявляемым к подобным системам.