823 resultados para customer dominant logic
Resumo:
Earlier studies on measurement of customer satisfaction are based on either transaction specific or overall approaches. The transaction specific approach evaluates customer satisfaction with single components in the whole purchase process but the overall satisfaction was based on all the encounters or experiences to the customer throughout the purchase process. Consumers will comment on particular events of their purchase process when asked about transaction-specific satisfaction and they will comment their overall impression and general experiences in overall satisfaction (Bitner & Hubbert 1994) Through a critical review on the literature, it has been identified a new approaches to customer satisfaction, say, cumulative approaches that can be more useful than overall and transaction specific approaches for strategic decision making (Fornell et al 1996). The cumulative approach to customer satisfaction doesn’t study earlier due to the difficulty in operationalization of the concept. But the influencers of customer satisfaction are context specific and the prevailing models doesn’t give the sources of variations in the satisfaction, the importance of cumulative approaches to customer satisfaction has emerges that lights to a new research. The current study has focused to explore the influencers of overall customer satisfaction to form individual elements that can be used to identify the cumulative customer satisfaction.
Resumo:
Zusammenfassung Mobile Telekommunikationstechnologien verändern den Alltag, ihre Benutzer und die Geschäftswelt. Im Zuge der Mobilität haben die Nutzer von mobilen Übertragungstechnologien ein hohes Kommunikationsbedürfnis in jeglicher Situation entwickelt: Sie wollen überall und jederzeit kommunizieren und informiert sein. Dies ist auch darauf zurückzuführen, dass ein Wandel der Individualisierung – von der Person zur Situation – stattgefunden hat. Im Rahmen der Untersuchung gehen wir auf diese entscheidenden Veränderung ein und analysieren die Potenziale des Kontextmarketing im mobilen Customer Relationship Management anhand der Erringung von Wettbewerbsvorteilen durch Situationsfaktoren. Daneben zeigen wir mögliche Geschäftsmodelle und Wertschöpfungsketten auf. Abgerundet wird die Arbeit durch die Darstellung möglicher personenbezogener, technischer und rechtlicher Restriktionen.
Resumo:
The aim of this paper is to indicate how TOSCANA may be extended to allow graphical representations not only of concept lattices but also of concept graphs in the sense of Contextual Logic. The contextual-logic extension of TOSCANA requires the logical scaling of conceptual and relatioal scales for which we propose the Peircean Algebraic Logic as reconstructed by R. W. Burch. As graphical representations we recommend, besides labelled line diagrams of concept lattices and Sowa's diagrams of conceptual graphs, particular information maps for utilizing background knowledge as much as possible. Our considerations are illustrated by a small information system about the domestic flights in Austria.
Resumo:
Die langfristige Sicherung bestehender (profitabler) Kundenbeziehungen erweist sich für Unternehmen zunehmend als eine wichtige und zugleich immer schwieriger zu bewältigende Herausforderung. Vor dem Hintergrund hoher Kosten für die Neukundengewinnung und sinkender Kundenloyalität auf gesättigten, wettbewerbsintensiven und transparenten Märkten – verbunden mit tendenziell steigenden Abwanderungsraten – rücken die Früherkennung und Prävention von Kundenabwanderungen sowie die Kundenrückgewinnung verstärkt in den Fokus. Der Aufwand für derartige Anstrengungen muss in einem sinnvollen Verhältnis zum Ertrag stehen. Letztlich wird also für den Komplex „Kundenabwanderung“ ein ergebnisgesteuertes Gesamtsystem der Früherkennung, Prävention und Rückgewinnung benötigt. An dieser Stelle setzt das Customer Recovery Controlling an. Auf Basis des kontributionsorientierten Controllingansatzes wird ein ganzheitliches Controllingsystem für das Customer Recovery Management entwickelt. Dabei werden die führungsunterstützenden Controllingprinzipien der Entscheidungsfundierung, -reflexion und Koordinationsentlastung einschließlich zentraler Controllinginstrumente in den Gesamtzusammenhang des Customer Recovery Managementprozesses gestellt. Es wird aufgezeigt, dass mit einem professionellen Customer Recovery Controlling große Nutzenpotenziale verbunden sind, die sich auf der Customer Recovery Managementebene (z.B. verbesserte Entscheidungsqualität, höhere Präventions- bzw. Rückgewinnungsraten) wie auch auf der Ebene der Gesamtunternehmung (z.B. Sicherung bzw. Erhöhung des Kundenstammwertes) auswirken. Die Erfolgsmodellierung zählt zu den wesentlichen Aufgaben des Controlling. Diesbezüglich bedarf es eines mehrdimensionalen Controllinginstruments, das neben Ergebnisindikatoren auch Leistungstreiber berücksichtigt: die Customer Recovery Scorecard. Ihre Perspektiven – Finanz-, Kunden-, Prozess-, Potenzial- und Wettbewerbsperspektive – sichern eine ganzheitliche Betrachtung der strategisch relevanten Erfolgsfaktoren und darüber hinaus gewährleisten die Kennzahlen eine systematische Planung, Steuerung und Kontrolle des Customer Recovery Management Erfolgs. Für die Erfolgsgrößen werden kausale Abhängigkeiten in Form von Ursache-Wirkungs-Beziehungen innerhalb und zwischen den Perspektiven erfasst (Strategy Maps), wodurch gewissermaßen eine Modellierung der Wertschöpfungskette im Customer Recovery Management erfolgt. Unsere durchgeführte Studie zum Status Quo des Customer Recovery Controlling in der deutschen (groß-)unternehmerischen Dienstleistungspraxis hat gezeigt, dass der präventive Umgang mit Kundenabwanderung zukünftig an Bedeutung gewinnen wird. Obwohl die Mehrheit der befragten Unternehmen über ein organisatorisch verankertes Controlling verfügt, sind bezüglich des allgemeinen Controllingentwicklungsstandes inkl. des Instrumenteneinsatzes Defizite zu konstatieren. In Bezug auf Letzteres hat sich herausgestellt, dass rein ökonomische Aspekte eine dominante Stellung einnehmen; Finanzkennzahlen werden gegenüber den Markt-, Prozess und Potenzialkennzahlen zum einen häufiger eingesetzt und zum anderen auch in ihrer Bedeutung höher eingeschätzt. Darüber hinaus ist der Einsatz von Kennzahlensystemen im Customer Recovery Management noch nicht weit verbreitet und auch hier ist ein finanzwirtschaftlicher Fokus festzustellen. Der Erfolg von Customer Recovery Maßnahmen wird zu einem großen Ausmaß durch die Nutzung des Synergiepotenzials von Customer Recovery Management (Führung vom Markt bzw. Kunden her) und Controlling (Führung vom Erfolg her) determiniert.
Resumo:
The dynamic power requirement of CMOS circuits is rapidly becoming a major concern in the design of personal information systems and large computers. In this work we present a number of new CMOS logic families, Charge Recovery Logic (CRL) as well as the much improved Split-Level Charge Recovery Logic (SCRL), within which the transfer of charge between the nodes occurs quasistatically. Operating quasistatically, these logic families have an energy dissipation that drops linearly with operating frequency, i.e., their power consumption drops quadratically with operating frequency as opposed to the linear drop of conventional CMOS. The circuit techniques in these new families rely on constructing an explicitly reversible pipelined logic gate, where the information necessary to recover the energy used to compute a value is provided by computing its logical inverse. Information necessary to uncompute the inverse is available from the subsequent inverse logic stage. We demonstrate the low energy operation of SCRL by presenting the results from the testing of the first fully quasistatic 8 x 8 multiplier chip (SCRL-1) employing SCRL circuit techniques.
Resumo:
General-purpose computing devices allow us to (1) customize computation after fabrication and (2) conserve area by reusing expensive active circuitry for different functions in time. We define RP-space, a restricted domain of the general-purpose architectural space focussed on reconfigurable computing architectures. Two dominant features differentiate reconfigurable from special-purpose architectures and account for most of the area overhead associated with RP devices: (1) instructions which tell the device how to behave, and (2) flexible interconnect which supports task dependent dataflow between operations. We can characterize RP-space by the allocation and structure of these resources and compare the efficiencies of architectural points across broad application characteristics. Conventional FPGAs fall at one extreme end of this space and their efficiency ranges over two orders of magnitude across the space of application characteristics. Understanding RP-space and its consequences allows us to pick the best architecture for a task and to search for more robust design points in the space. Our DPGA, a fine- grained computing device which adds small, on-chip instruction memories to FPGAs is one such design point. For typical logic applications and finite- state machines, a DPGA can implement tasks in one-third the area of a traditional FPGA. TSFPGA, a variant of the DPGA which focuses on heavily time-switched interconnect, achieves circuit densities close to the DPGA, while reducing typical physical mapping times from hours to seconds. Rigid, fabrication-time organization of instruction resources significantly narrows the range of efficiency for conventional architectures. To avoid this performance brittleness, we developed MATRIX, the first architecture to defer the binding of instruction resources until run-time, allowing the application to organize resources according to its needs. Our focus MATRIX design point is based on an array of 8-bit ALU and register-file building blocks interconnected via a byte-wide network. With today's silicon, a single chip MATRIX array can deliver over 10 Gop/s (8-bit ops). On sample image processing tasks, we show that MATRIX yields 10-20x the computational density of conventional processors. Understanding the cost structure of RP-space helps us identify these intermediate architectural points and may provide useful insight more broadly in guiding our continual search for robust and efficient general-purpose computing structures.
Resumo:
The underlying assumptions for interpreting the meaning of data often change over time, which further complicates the problem of semantic heterogeneities among autonomous data sources. As an extension to the COntext INterchange (COIN) framework, this paper introduces the notion of temporal context as a formalization of the problem. We represent temporal context as a multi-valued method in F-Logic; however, only one value is valid at any point in time, the determination of which is constrained by temporal relations. This representation is then mapped to an abductive constraint logic programming framework with temporal relations being treated as constraints. A mediation engine that implements the framework automatically detects and reconciles semantic differences at different times. We articulate that this extended COIN framework is suitable for reasoning on the Semantic Web.
Resumo:
The underlying assumptions for interpreting the meaning of data often change over time, which further complicates the problem of semantic heterogeneities among autonomous data sources. As an extension to the COntext INterchange (COIN) framework, this paper introduces the notion of temporal context as a formalization of the problem. We represent temporal context as a multi-valued method in F-Logic; however, only one value is valid at any point in time, the determination of which is constrained by temporal relations. This representation is then mapped to an abductive constraint logic programming framework with temporal relations being treated as constraints. A mediation engine that implements the framework automatically detects and reconciles semantic differences at different times. We articulate that this extended COIN framework is suitable for reasoning on the Semantic Web.
Resumo:
The underlying assumptions for interpreting the meaning of data often change over time, which further complicates the problem of semantic heterogeneities among autonomous data sources. As an extension to the COntext INterchange (COIN) framework, this paper introduces the notion of temporal context as a formalization of the problem. We represent temporal context as a multi-valued method in F-Logic; however, only one value is valid at any point in time, the determination of which is constrained by temporal relations. This representation is then mapped to an abductive constraint logic programming framework with temporal relations being treated as constraints. A mediation engine that implements the framework automatically detects and reconciles semantic differences at different times. We articulate that this extended COIN framework is suitable for reasoning on the Semantic Web.
Resumo:
The underlying assumptions for interpreting the meaning of data often change over time, which further complicates the problem of semantic heterogeneities among autonomous data sources. As an extension to the COntext INterchange (COIN) framework, this paper introduces the notion of temporal context as a formalization of the problem. We represent temporal context as a multi-valued method in F-Logic; however, only one value is valid at any point in time, the determination of which is constrained by temporal relations. This representation is then mapped to an abductive constraint logic programming framework with temporal relations being treated as constraints. A mediation engine that implements the framework automatically detects and reconciles semantic differences at different times. We articulate that this extended COIN framework is suitable for reasoning on the Semantic Web.
Resumo:
Customer satisfaction and retention are key issues for organizations in today’s competitive market place. As such, much research and revenue has been invested in developing accurate ways of assessing consumer satisfaction at both the macro (national) and micro (organizational) level, facilitating comparisons in performance both within and between industries. Since the instigation of the national customer satisfaction indices (CSI), partial least squares (PLS) has been used to estimate the CSI models in preference to structural equation models (SEM) because they do not rely on strict assumptions about the data. However, this choice was based upon some misconceptions about the use of SEM’s and does not take into consideration more recent advances in SEM, including estimation methods that are robust to non-normality and missing data. In this paper, both SEM and PLS approaches were compared by evaluating perceptions of the Isle of Man Post Office Products and Customer service using a CSI format. The new robust SEM procedures were found to be advantageous over PLS. Product quality was found to be the only driver of customer satisfaction, while image and satisfaction were the only predictors of loyalty, thus arguing for the specificity of postal services
Resumo:
Estudi dels hisendats a les comarques gironins durant el s. XIX. Es tractava de famílies que durant centúries havien anat acumulant propietats agrícoles, i així es van consolidar com una minoria de grans propietaris rurals que podien viure de les seves rendes