860 resultados para computer vision,machine learning,centernet,volleyball,sports


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Prior research shows that electronic word of mouth (eWOM) wields considerable influence over consumer behavior. However, as the volume and variety of eWOM grows, firms are faced with challenges in analyzing and responding to this information. In this dissertation, I argue that to meet the new challenges and opportunities posed by the expansion of eWOM and to more accurately measure its impacts on firms and consumers, we need to revisit our methodologies for extracting insights from eWOM. This dissertation consists of three essays that further our understanding of the value of social media analytics, especially with respect to eWOM. In the first essay, I use machine learning techniques to extract semantic structure from online reviews. These semantic dimensions describe the experiences of consumers in the service industry more accurately than traditional numerical variables. To demonstrate the value of these dimensions, I show that they can be used to substantially improve the accuracy of econometric models of firm survival. In the second essay, I explore the effects on eWOM of online deals, such as those offered by Groupon, the value of which to both consumers and merchants is controversial. Through a combination of Bayesian econometric models and controlled lab experiments, I examine the conditions under which online deals affect online reviews and provide strategies to mitigate the potential negative eWOM effects resulting from online deals. In the third essay, I focus on how eWOM can be incorporated into efforts to reduce foodborne illness, a major public health concern. I demonstrate how machine learning techniques can be used to monitor hygiene in restaurants through crowd-sourced online reviews. I am able to identify instances of moral hazard within the hygiene inspection scheme used in New York City by leveraging a dictionary specifically crafted for this purpose. To the extent that online reviews provide some visibility into the hygiene practices of restaurants, I show how losses from information asymmetry may be partially mitigated in this context. Taken together, this dissertation contributes by revisiting and refining the use of eWOM in the service sector through a combination of machine learning and econometric methodologies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Object recognition has long been a core problem in computer vision. To improve object spatial support and speed up object localization for object recognition, generating high-quality category-independent object proposals as the input for object recognition system has drawn attention recently. Given an image, we generate a limited number of high-quality and category-independent object proposals in advance and used as inputs for many computer vision tasks. We present an efficient dictionary-based model for image classification task. We further extend the work to a discriminative dictionary learning method for tensor sparse coding. In the first part, a multi-scale greedy-based object proposal generation approach is presented. Based on the multi-scale nature of objects in images, our approach is built on top of a hierarchical segmentation. We first identify the representative and diverse exemplar clusters within each scale. Object proposals are obtained by selecting a subset from the multi-scale segment pool via maximizing a submodular objective function, which consists of a weighted coverage term, a single-scale diversity term and a multi-scale reward term. The weighted coverage term forces the selected set of object proposals to be representative and compact; the single-scale diversity term encourages choosing segments from different exemplar clusters so that they will cover as many object patterns as possible; the multi-scale reward term encourages the selected proposals to be discriminative and selected from multiple layers generated by the hierarchical image segmentation. The experimental results on the Berkeley Segmentation Dataset and PASCAL VOC2012 segmentation dataset demonstrate the accuracy and efficiency of our object proposal model. Additionally, we validate our object proposals in simultaneous segmentation and detection and outperform the state-of-art performance. To classify the object in the image, we design a discriminative, structural low-rank framework for image classification. We use a supervised learning method to construct a discriminative and reconstructive dictionary. By introducing an ideal regularization term, we perform low-rank matrix recovery for contaminated training data from all categories simultaneously without losing structural information. A discriminative low-rank representation for images with respect to the constructed dictionary is obtained. With semantic structure information and strong identification capability, this representation is good for classification tasks even using a simple linear multi-classifier.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Analysis of data without labels is commonly subject to scrutiny by unsupervised machine learning techniques. Such techniques provide more meaningful representations, useful for better understanding of a problem at hand, than by looking only at the data itself. Although abundant expert knowledge exists in many areas where unlabelled data is examined, such knowledge is rarely incorporated into automatic analysis. Incorporation of expert knowledge is frequently a matter of combining multiple data sources from disparate hypothetical spaces. In cases where such spaces belong to different data types, this task becomes even more challenging. In this paper we present a novel immune-inspired method that enables the fusion of such disparate types of data for a specific set of problems. We show that our method provides a better visual understanding of one hypothetical space with the help of data from another hypothetical space. We believe that our model has implications for the field of exploratory data analysis and knowledge discovery.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Visual inputs to artificial and biological visual systems are often quantized: cameras accumulate photons from the visual world, and the brain receives action potentials from visual sensory neurons. Collecting more information quanta leads to a longer acquisition time and better performance. In many visual tasks, collecting a small number of quanta is sufficient to solve the task well. The ability to determine the right number of quanta is pivotal in situations where visual information is costly to obtain, such as photon-starved or time-critical environments. In these situations, conventional vision systems that always collect a fixed and large amount of information are infeasible. I develop a framework that judiciously determines the number of information quanta to observe based on the cost of observation and the requirement for accuracy. The framework implements the optimal speed versus accuracy tradeoff when two assumptions are met, namely that the task is fully specified probabilistically and constant over time. I also extend the framework to address scenarios that violate the assumptions. I deploy the framework to three recognition tasks: visual search (where both assumptions are satisfied), scotopic visual recognition (where the model is not specified), and visual discrimination with unknown stimulus onset (where the model is dynamic over time). Scotopic classification experiments suggest that the framework leads to dramatic improvement in photon-efficiency compared to conventional computer vision algorithms. Human psychophysics experiments confirmed that the framework provides a parsimonious and versatile explanation for human behavior under time pressure in both static and dynamic environments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the past few years, human facial age estimation has drawn a lot of attention in the computer vision and pattern recognition communities because of its important applications in age-based image retrieval, security control and surveillance, biomet- rics, human-computer interaction (HCI) and social robotics. In connection with these investigations, estimating the age of a person from the numerical analysis of his/her face image is a relatively new topic. Also, in problems such as Image Classification the Deep Neural Networks have given the best results in some areas including age estimation. In this work we use three hand-crafted features as well as five deep features that can be obtained from pre-trained deep convolutional neural networks. We do a comparative study of the obtained age estimation results with these features.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In questa tesi è descritto il lavoro svolto presso un'azienda informatica locale, allo scopo di ricerca ed implementazione di un algoritmo per individuare ed offuscare i volti presenti all'interno di video di e-learning in ambito industriale, al fine di garantire la privacy degli operai presenti. Tale algoritmo sarebbe stato poi da includere in un modulo software da inserire all'interno di un applicazione web già esistente per la gestione di questi video. Si è ricercata una soluzione ad hoc considerando le caratteristiche particolare del problema in questione, studiando le principali tecniche della Computer Vision per comprendere meglio quale strada percorrere. Si è deciso quindi di implementare un algoritmo di Blob Tracking basato sul colore.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The rapid growth of virtualized data centers and cloud hosting services is making the management of physical resources such as CPU, memory, and I/O bandwidth in data center servers increasingly important. Server management now involves dealing with multiple dissimilar applications with varying Service-Level-Agreements (SLAs) and multiple resource dimensions. The multiplicity and diversity of resources and applications are rendering administrative tasks more complex and challenging. This thesis aimed to develop a framework and techniques that would help substantially reduce data center management complexity. We specifically addressed two crucial data center operations. First, we precisely estimated capacity requirements of client virtual machines (VMs) while renting server space in cloud environment. Second, we proposed a systematic process to efficiently allocate physical resources to hosted VMs in a data center. To realize these dual objectives, accurately capturing the effects of resource allocations on application performance is vital. The benefits of accurate application performance modeling are multifold. Cloud users can size their VMs appropriately and pay only for the resources that they need; service providers can also offer a new charging model based on the VMs performance instead of their configured sizes. As a result, clients will pay exactly for the performance they are actually experiencing; on the other hand, administrators will be able to maximize their total revenue by utilizing application performance models and SLAs. This thesis made the following contributions. First, we identified resource control parameters crucial for distributing physical resources and characterizing contention for virtualized applications in a shared hosting environment. Second, we explored several modeling techniques and confirmed the suitability of two machine learning tools, Artificial Neural Network and Support Vector Machine, to accurately model the performance of virtualized applications. Moreover, we suggested and evaluated modeling optimizations necessary to improve prediction accuracy when using these modeling tools. Third, we presented an approach to optimal VM sizing by employing the performance models we created. Finally, we proposed a revenue-driven resource allocation algorithm which maximizes the SLA-generated revenue for a data center.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fully articulated hand tracking promises to enable fundamentally new interactions with virtual and augmented worlds, but the limited accuracy and efficiency of current systems has prevented widespread adoption. Today's dominant paradigm uses machine learning for initialization and recovery followed by iterative model-fitting optimization to achieve a detailed pose fit. We follow this paradigm, but make several changes to the model-fitting, namely using: (1) a more discriminative objective function; (2) a smooth-surface model that provides gradients for non-linear optimization; and (3) joint optimization over both the model pose and the correspondences between observed data points and the model surface. While each of these changes may actually increase the cost per fitting iteration, we find a compensating decrease in the number of iterations. Further, the wide basin of convergence means that fewer starting points are needed for successful model fitting. Our system runs in real-time on CPU only, which frees up the commonly over-burdened GPU for experience designers. The hand tracker is efficient enough to run on low-power devices such as tablets. We can track up to several meters from the camera to provide a large working volume for interaction, even using the noisy data from current-generation depth cameras. Quantitative assessments on standard datasets show that the new approach exceeds the state of the art in accuracy. Qualitative results take the form of live recordings of a range of interactive experiences enabled by this new approach.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis builds a framework for evaluating downside risk from multivariate data via a special class of risk measures (RM). The peculiarity of the analysis lies in getting rid of strong data distributional assumptions and in orientation towards the most critical data in risk management: those with asymmetries and heavy tails. At the same time, under typical assumptions, such as the ellipticity of the data probability distribution, the conformity with classical methods is shown. The constructed class of RM is a multivariate generalization of the coherent distortion RM, which possess valuable properties for a risk manager. The design of the framework is twofold. The first part contains new computational geometry methods for the high-dimensional data. The developed algorithms demonstrate computability of geometrical concepts used for constructing the RM. These concepts bring visuality and simplify interpretation of the RM. The second part develops models for applying the framework to actual problems. The spectrum of applications varies from robust portfolio selection up to broader spheres, such as stochastic conic optimization with risk constraints or supervised machine learning.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Las organizaciones y sus entornos son sistemas complejos. Tales sistemas son difíciles de comprender y predecir. Pese a ello, la predicción es una tarea fundamental para la gestión empresarial y para la toma de decisiones que implica siempre un riesgo. Los métodos clásicos de predicción (entre los cuales están: la regresión lineal, la Autoregresive Moving Average y el exponential smoothing) establecen supuestos como la linealidad, la estabilidad para ser matemática y computacionalmente tratables. Por diferentes medios, sin embargo, se han demostrado las limitaciones de tales métodos. Pues bien, en las últimas décadas nuevos métodos de predicción han surgido con el fin de abarcar la complejidad de los sistemas organizacionales y sus entornos, antes que evitarla. Entre ellos, los más promisorios son los métodos de predicción bio-inspirados (ej. redes neuronales, algoritmos genéticos /evolutivos y sistemas inmunes artificiales). Este artículo pretende establecer un estado situacional de las aplicaciones actuales y potenciales de los métodos bio-inspirados de predicción en la administración.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A utilização generalizada do computador para a automatização das mais diversas tarefas, tem conduzido ao desenvolvimento de aplicações que possibilitam a realização de actividades que até então poderiam não só ser demoradas, como estar sujeitas a erros inerentes à actividade humana. A investigação desenvolvida no âmbito desta tese, tem como objectivo o desenvolvimento de um software e algoritmos que permitam a avaliação e classificação de queijos produzidos na região de Évora, através do processamento de imagens digitais. No decurso desta investigação, foram desenvolvidos algoritmos e metodologias que permitem a identificação dos olhos e dimensões do queijo, a presença de textura na parte exterior do queijo, assim como características relativas à cor do mesmo, permitindo que com base nestes parâmetros possa ser efectuada uma classificação e avaliação do queijo. A aplicação de software, resultou num produto de simples utilização. As fotografias devem respeitar algumas regras simples, sobre as quais se efectuará o processamento e classificação do queijo. ABSTRACT: The widespread use of computers for the automation of repetitive tasks, has resulted in developing applications that allow a range of activities, that until now could not only be time consuming and also subject to errors inherent to human activity, to be performed without or with little human intervention. The research carried out within this thesis, aims to develop a software application and algorithms that enable the assessment and classification of cheeses produced in the region of Évora, by digital images processing. Throughout this research, algorithms and methodologies have been developed that allow the identification of the cheese eyes, the dimensions of the cheese, the presence of texture on the outside of cheese, as well as an analysis of the color, so that, based on these parameters, a classification and evaluation of the cheese can be conducted. The developed software application, is product simple to use, requiring no special computer knowledge. Requires only the acquisition of the photographs following a simple set of rules, based on which it will do the processing and classification of cheese.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A evolução tecnológica tem provocado uma evolução na medicina, através de sistemas computacionais voltados para o armazenamento, captura e disponibilização de informações médicas. Os relatórios médicos são, na maior parte das vezes, guardados num texto livre não estruturado e escritos com vocabulário proprietário, podendo ocasionar falhas de interpretação. Através das linguagens da Web Semântica, é possível utilizar antologias como modo de estruturar e padronizar a informação dos relatórios médicos, adicionando¬ lhe anotações semânticas. A informação contida nos relatórios pode desta forma ser publicada na Web, permitindo às máquinas o processamento automático da informação. No entanto, o processo de criação de antologias é bastante complexo, pois existe o problema de criar uma ontologia que não cubra todo o domínio pretendido. Este trabalho incide na criação de uma ontologia e respectiva povoação, através de técnicas de PLN e Aprendizagem Automática que permitem extrair a informação dos relatórios médicos. Foi desenvolvida uma aplicação, que permite ao utilizador converter relatórios do formato digital para o formato OWL. ABSTRACT: Technological evolution has caused a medicine evolution through computer systems which allow storage, gathering and availability of medical information. Medical reports are, most of the times, stored in a non-structured free text and written in a personal way so that misunderstandings may occur. Through Semantic Web languages, it’s possible to use ontology as a way to structure and standardize medical reports information by adding semantic notes. The information in those reports can, by these means, be displayed on the web, allowing machines automatic information processing. However, the process of creating ontology is very complex, as there is a risk creating of an ontology that not covering the whole desired domain. This work is about creation of an ontology and its population through NLP and Machine Learning techniques to extract information from medical reports. An application was developed which allows the user to convert reports from digital for¬ mat to OWL format.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a study made in a field poorly explored in the Portuguese language – modality and its automatic tagging. Our main goal was to find a set of attributes for the creation of automatic tag- gers with improved performance over the bag-of-words (bow) approach. The performance was measured using precision, recall and F1. Because it is a relatively unexplored field, the study covers the creation of the corpus (composed by eleven verbs), the use of a parser to extract syntac- tic and semantic information from the sentences and a machine learning approach to identify modality values. Based on three different sets of attributes – from trigger itself and the trigger’s path (from the parse tree) and context – the system creates a tagger for each verb achiev- ing (in almost every verb) an improvement in F1 when compared to the traditional bow approach.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Al giorno d'oggi il reinforcement learning ha dimostrato di essere davvero molto efficace nel machine learning in svariati campi, come ad esempio i giochi, il riconoscimento vocale e molti altri. Perciò, abbiamo deciso di applicare il reinforcement learning ai problemi di allocazione, in quanto sono un campo di ricerca non ancora studiato con questa tecnica e perchè questi problemi racchiudono nella loro formulazione un vasto insieme di sotto-problemi con simili caratteristiche, per cui una soluzione per uno di essi si estende ad ognuno di questi sotto-problemi. In questo progetto abbiamo realizzato un applicativo chiamato Service Broker, il quale, attraverso il reinforcement learning, apprende come distribuire l'esecuzione di tasks su dei lavoratori asincroni e distribuiti. L'analogia è quella di un cloud data center, il quale possiede delle risorse interne - possibilmente distribuite nella server farm -, riceve dei tasks dai suoi clienti e li esegue su queste risorse. L'obiettivo dell'applicativo, e quindi del data center, è quello di allocare questi tasks in maniera da minimizzare il costo di esecuzione. Inoltre, al fine di testare gli agenti del reinforcement learning sviluppati è stato creato un environment, un simulatore, che permettesse di concentrarsi nello sviluppo dei componenti necessari agli agenti, invece che doversi anche occupare di eventuali aspetti implementativi necessari in un vero data center, come ad esempio la comunicazione con i vari nodi e i tempi di latenza di quest'ultima. I risultati ottenuti hanno dunque confermato la teoria studiata, riuscendo a ottenere prestazioni migliori di alcuni dei metodi classici per il task allocation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Reinforcement learning is a particular paradigm of machine learning that, recently, has proved times and times again to be a very effective and powerful approach. On the other hand, cryptography usually takes the opposite direction. While machine learning aims at analyzing data, cryptography aims at maintaining its privacy by hiding such data. However, the two techniques can be jointly used to create privacy preserving models, able to make inferences on the data without leaking sensitive information. Despite the numerous amount of studies performed on machine learning and cryptography, reinforcement learning in particular has never been applied to such cases before. Being able to successfully make use of reinforcement learning in an encrypted scenario would allow us to create an agent that efficiently controls a system without providing it with full knowledge of the environment it is operating in, leading the way to many possible use cases. Therefore, we have decided to apply the reinforcement learning paradigm to encrypted data. In this project we have applied one of the most well-known reinforcement learning algorithms, called Deep Q-Learning, to simple simulated environments and studied how the encryption affects the training performance of the agent, in order to see if it is still able to learn how to behave even when the input data is no longer readable by humans. The results of this work highlight that the agent is still able to learn with no issues whatsoever in small state spaces with non-secure encryptions, like AES in ECB mode. For fixed environments, it is also able to reach a suboptimal solution even in the presence of secure modes, like AES in CBC mode, showing a significant improvement with respect to a random agent; however, its ability to generalize in stochastic environments or big state spaces suffers greatly.