687 resultados para common ground
Resumo:
Since it is difficult to find the analytical solution of the governing Poisson equation for double gate MOSFETs with the body doping term included, the majority of the compact models are developed for undoped-body devices for which the analytical solution is available. Proposed is a simple technique to included a body doping term in such surface potential based common double gate MOSFET models also by taking into account any differences between the gate oxide thickness. The proposed technique is validated against TCAD simulation and found to be accurate as long as the channel is fully depleted.
Resumo:
The terms phase transformation, polymorphism, disorder, isosterism, and isostructuralism are often the keywords used in the design and engineering of molecular crystals. Three benzoylcarvacryl thiourea derivatives with -NH-C(S)-NH-C(O)-] cores generate molecular crystals, which provide the basis for exploring a common link between the structures related by aforementioned terms. The apparent ``origin'' of all these structural modifications has been traced to the formation of a planar molecular dimeric chain built with homomeric R-2(2)(12) and R-2(2)(8) synthons occurring in tandem, one formed with N-H center dot center dot center dot O and the other with N-H center dot center dot center dot S hydrogen bonds.
Resumo:
Luteal insufficiency affects fertility and hence study of mechanisms that regulate corpus luteum (CL) function is of prime importance to overcome infertility problems. Exploration of human genome sequence has helped to study the frequency of single nucleotide polymorphisms (SNPs). Clinical benefits of screening SNPs in infertility are being recognized well in recent times. Examining SNPs in genes associated with maintenance and regression of CL may help to understand unexplained luteal insufficiency and related infertility. Publicly available microarray gene expression databases reveal the global gene expression patterns in primate CL during the different functional state. We intend to explore computationally the deleterious SNPs of human genes reported to be common targets of luteolysin and luteotropin in primate CL Different computational algorithms were used to dissect out the functional significance of SNPs in the luteinizing hormone sensitive genes. The results raise the possibility that screening for SNPs might be integrated to evaluate luteal insufficiency associated with human female infertility for future studies. (C) 2012 Elsevier B.V. All rights reserved,
Resumo:
A new hybrid five-level inverter topology with common-mode voltage (CMV) elimination for induction motor drive is proposed in this paper. This topology has only one dc source, and different voltage levels are generated by using this voltage source along with floating capacitors charged to asymmetrical voltage levels. The pulsewidth modulation (PWM) scheme employed in this topology balances the capacitor voltages at the required levels at any power factor and modulation index while eliminating the CMV. This inverter has good fault-tolerant capability as it can be operated in three-or two-level mode with CMV elimination, in case of any failure in the H-bridges. More voltage levels with CMV elimination can be realized from this topology but only in a limited range of modulation index and power factor. Extensive simulation is done to validate the PWM technique for CMV elimination and balancing of the capacitor voltages. The experimental verification of the proposed inverter-fed induction motor is carried out in the linear modulation and overmodulation regions. The steady-state and transient operations of the drive are verified. The dynamics of the capacitor voltage balancing is also tested. The experimental results demonstrate that the proposed topology can be considered for industrial drive applications.
Resumo:
Artificial Neural Networks (ANNs) have been found to be a robust tool to model many non-linear hydrological processes. The present study aims at evaluating the performance of ANN in simulating and predicting ground water levels in the uplands of a tropical coastal riparian wetland. The study involves comparison of two network architectures, Feed Forward Neural Network (FFNN) and Recurrent Neural Network (RNN) trained under five algorithms namely Levenberg Marquardt algorithm, Resilient Back propagation algorithm, BFGS Quasi Newton algorithm, Scaled Conjugate Gradient algorithm, and Fletcher Reeves Conjugate Gradient algorithm by simulating the water levels in a well in the study area. The study is analyzed in two cases-one with four inputs to the networks and two with eight inputs to the networks. The two networks-five algorithms in both the cases are compared to determine the best performing combination that could simulate and predict the process satisfactorily. Ad Hoc (Trial and Error) method is followed in optimizing network structure in all cases. On the whole, it is noticed from the results that the Artificial Neural Networks have simulated and predicted the water levels in the well with fair accuracy. This is evident from low values of Normalized Root Mean Square Error and Relative Root Mean Square Error and high values of Nash-Sutcliffe Efficiency Index and Correlation Coefficient (which are taken as the performance measures to calibrate the networks) calculated after the analysis. On comparison of ground water levels predicted with those at the observation well, FFNN trained with Fletcher Reeves Conjugate Gradient algorithm taken four inputs has outperformed all other combinations.
Resumo:
Two new anthracene-functionalized fluorescent tris-imidazolium salts have been synthesized, characterized, and proven to be selective sensors for picric acid, which is a common constituent of many powerful explosives. Theoretical studies revealed an unusual ground-state electron transfer from picrate anion to the sensor molecules.
Resumo:
The rapid recent increase in microarray-based gene expression studies in the corpus luteum (CL) utilizing macaque models gathered increasing volume of data in publically accessible microarray expression databases. Examining gene pathways in different functional states of CL may help to understand the factors that control luteal function and hence human fertility. Co-regulation of genes in microarray experiments may imply common transcriptional regulation by sequence-specific DNA-binding transcriptional factors. We have computationally analyzed the transcription factor binding sites (TFBS) in a previously reported macaque luteal microarray gene set (n = 15) that are common targets of luteotropin (luteinizing hormone (LH) and human chorionic gonadotropin (hCG)) and luteolysin (prostaglandin (PG) F-2 alpha). This in silico approach can reveal transcriptional networks that control these important genes which are representative of the interplay between luteotropic and luteolytic factors in the control of luteal function. Our computational analyses revealed 6 matrix families whose binding sites are significantly over-represented in promoters of these genes. The roles of these factors are discussed, which might help to understand the transcriptional regulatory network in the control of luteal function. These factors might be promising experimental targets for investigation of human luteal insufficiency. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Design of a dual band pass filter employing microstrip line with defected ground is presented in this paper. A dual band filter at 2.45GHz and 3.5GHz (covering WLAN and WiMAX) with 6% bandwidth has been designed at each frequency. Apertures in ground plane were used to improve the stop band rejection characteristics and coupling levels in the filter. Measured results of the experimental filter were compared against the simulation results for the purpose of validation.
Resumo:
Closed-form expressions for the propagation characteristics of coupled microstrip lines with a symmetrical aperture in the ground plane are derived. Expressions for the regular microstrip coupled lines have been modified using physical insights to incorporate the effect of the aperture. The accuracy of these expressions has been verified by full-wave simulations and compared with conformal mapping analysis. These expressions are accurate within 5% for a substrate whose thickness varies from 0.2 to 1.6mm and permittivity in the range of 210. Designing a broadband filter based on planar multi-conductor coupled lines with aperture in the ground plane is demonstrated in this paper using the proposed expressions for its practical use.
Resumo:
With the unique quasi-linear relationship between the surface potentials along the channel, recently we have proposed a quasi-static terminal charge model for common double-gate MOSFETs, which might have asymmetric gate oxide thickness. In this brief, we extend this concept to develop the nonquasi-static (NQS) charge model for the same by solving the governing continuity equations. The proposed NQS model shows good agreement against TCAD simulations and appears to be useful for efficient circuit simulation.
Resumo:
This paper proposes a new 3 level common mode voltage eliminated inverter using an inverter structure formed by cascading a H-Bridge with a three-level flying capacitor inverter. The three phase space vector polygon formed by this configuration and the polygon formed by the common-mode eliminated states have been discussed. The entire system is simulated in Simulink and the results are experimentally verified. This system has an advantage that if one of devices in the H-Bridge fails, the system can still be operated as a normal 3 level inverter mode at full power. This inverter has many advantages like use of single DC-supply, making it possible for a back to back grid-tied converter application, improved reliability etc.
Resumo:
This letter relates to the design of crossovers for carrying criss crossing signals. Two types of crossovers are proposed in this letter. Both the crossovers are designed using a two layer printed circuit board. An unbroken continuous transmission line is routed in the top layer for carrying signal 1 from one node to another node. Transmission line used for carrying a signal 2 consists of three physically discontinuous, but electrically connected segments. Two end segments of these are located in the top layer while the middle segment is placed in the bottom layer. While Type I crossover offers an isolation of 25 dB, Type II crossover offers isolation better than 35 dB from dc to 10 GHz. These crossovers are compact and measure an actual size of 10 x 10 x 0.78 mm(3).
Resumo:
Functions are important in designing. However, several issues hinder progress with the understanding and usage of functions: lack of a clear and overarching definition of function, lack of overall justifications for the inevitability of the multiple views of function, and scarcity of systematic attempts to relate these views with one another. To help resolve these, the objectives of this research are to propose a common definition of function that underlies the multiple views in literature and to identify and validate the views of function that are logically justified to be present in designing. Function is defined as a change intended by designers between two scenarios: before and after the introduction of the design. A framework is proposed that comprises the above definition of function and an empirically validated model of designing, extended generate, evaluate, modify, and select of state-change, and an action, part, phenomenon, input, organ, and effect model of causality (Known as GEMS of SAPPhIRE), comprising the views of activity, outcome, requirement-solution-information, and system-environment. The framework is used to identify the logically possible views of function in the context of designing and is validated by comparing these with the views of function in the literature. Describing the different views of function using the proposed framework should enable comparisons and determine relationships among the various views, leading to better understanding and usage of functions in designing.
Resumo:
Himalayan region is one of the most active seismic regions in the world and many researchers have highlighted the possibility of great seismic event in the near future due to seismic gap. Seismic hazard analysis and microzonation of highly populated places in the region are mandatory in a regional scale. Region specific Ground Motion Predictive Equation (GMPE) is an important input in the seismic hazard analysis for macro- and micro-zonation studies. Few GMPEs developed in India are based on the recorded data and are applicable for a particular range of magnitudes and distances. This paper focuses on the development of a new GMPE for the Himalayan region considering both the recorded and simulated earthquakes of moment magnitude 5.3-8.7. The Finite Fault simulation model has been used for the ground motion simulation considering region specific seismotectonic parameters from the past earthquakes and source models. Simulated acceleration time histories and response spectra are compared with available records. In the absence of a large number of recorded data, simulations have been performed at unavailable locations by adopting Apparent Stations concept. Earthquakes recorded up to 2007 have been used for the development of new GMPE and earthquakes records after 2007 are used to validate new GMPE. Proposed GMPE matched very well with recorded data and also with other highly ranked GMPEs developed elsewhere and applicable for the region. Comparison of response spectra also have shown good agreement with recorded earthquake data. Quantitative analysis of residuals for the proposed GMPE and region specific GMPEs to predict Nepal-India 2011 earthquake of Mw of 5.7 records values shows that the proposed GMPE predicts Peak ground acceleration and spectral acceleration for entire distance and period range with lower percent residual when compared to exiting region specific GMPEs. Crown Copyright (C) 2013 Published by Elsevier Ltd. All rights reserved.
Resumo:
Identification and mapping of crevasses in glaciated regions is important for safe movement. However, the remote and rugged glacial terrain in the Himalaya poses greater challenges for field data collection. In the present study crevasse signatures were collected from Siachen and Samudra Tapu glaciers in the Indian Himalaya using ground-penetrating radar (GPR). The surveys were conducted using the antennas of 250 MHz frequency in ground mode and 350 MHz in airborne mode. The identified signatures of open and hidden crevasses in GPR profiles collected in ground mode were validated by ground truthing. The crevasse zones and buried boulder areas in a glacier were identified using a combination of airborne GPR profiles and SAR data, and the same have been validated with the high-resolution optical satellite imagery (Cartosat-1) and Survey of India mapsheet. Using multi-sensor data, a crevasse map for Samudra Tapu glacier was prepared. The present methodology can also be used for mapping the crevasse zones in other glaciers in the Himalaya.