977 resultados para combustion characteristic
Resumo:
The red cells found in the red rain in Kerala, India are now considered as a possible case of extraterrestrial life form. These cells can undergo rapid replication even at an extreme high temperature of 300 deg C. They can also be cultured in diverse unconventional chemical substrates. The molecular composition of these cells is yet to be identified. This paper reports the unusual autofluorescence characteristic of the cultured red rain cells. A spectrofluorimetric study has been performed to investigate this, which shows a systematic shift of the fluorescence emission peak wavelength as the excitation wavelength is increased. Conventional biomolecules are not known to have this property. Details of this investigation and the results are discussed.
Resumo:
The marine atmospheric boundary layer (MABL) plays a vital role in the transport of momentum and heat from the surface of the ocean into the atmosphere. A detailed study on the MABL characteristics was carried out using high-resolution surface-wind data as measured by the QuikSCAT (Quick scatterometer) satellite. Spatial variations in the surface wind, frictional velocity, roughness parameter and drag coe±cient for the di®erent seasons were studied. The surface wind was strong during the southwest monsoon season due to the modulation induced by the Low Level Jetstream. The drag coe±cient was larger during this season, due to the strong winds and was lower during the winter months. The spatial variations in the frictional velocity over the seas was small during the post-monsoon season (»0.2 m s¡1). The maximum spatial variation in the frictional velocity was found over the south Arabian Sea (0.3 to 0.5 m s¡1) during the southwest monsoon period, followed by the pre-monsoon over the Bay of Bengal (0.1 to 0.25 m s¡1). The mean wind-stress curl during the winter was positive over the equatorial region, with a maximum value of 1.5£10¡7 N m¡3, but on either side of the equatorial belt, a negative wind-stress curl dominated. The area average of the frictional velocity and drag coe±cient over the Arabian Sea and Bay of Bengal were also studied. The values of frictional velocity shows a variability that is similar to the intraseasonal oscillation (ISO) and this was con¯rmed via wavelet analysis. In the case of the drag coe±cient, the prominent oscillations were ISO and quasi-biweekly mode (QBM). The interrelationship between the drag coe±cient and the frictional velocity with wind speed in both the Arabian Sea and the Bay of Bengal was also studied.
Resumo:
Extensive grassland biomass for bioenergy production has long been subject of scientific research. The possibility of combining nature conservation goals with a profitable management while reducing competition with food production has created a strong interest in this topic. However, the botanical composition will play a key role for solid fuel quality of grassland biomass and will have effects on the combustion process by potentially causing corrosion, emission and slagging. On the other hand, botanical composition will affect anaerobic digestibility and thereby the biogas potential. In this thesis aboveground biomass from the Jena-Experiment plots was harvested in 2008 and 2009 and analysed for the most relevant chemical constituents effecting fuel quality and anaerobic digestibility. Regarding combustion, the following parameters were of main focus: higher heating value (HHV), gross energy yield (GE), ash content, ash softening temperature (AST), K, Ca, Mg, N, Cl and S content. For biogas production the following parameters were investigated: substrate specific methane yield (CH4 sub), area specific methane yield (CH4 area), crude fibre (CF), crude protein (CP), crude lipid (CL) and nitrogen-free extract (NfE). Furthermore, an improvement of the fuel quality was investigated through applying the Integrated generation of solid Fuel and Biogas from Biomass (IFBB) procedure. Through the specific setup of the Jena-Experiment it was possible to outline the changes of these parameters along two diversity gradients: (i) species richness (SR; 1 to 60 species) and (ii) functional group (grasses, legumes, small herbs and tall herbs) presence. This was a novel approach on investigating the bioenergy characteristic of extensive grassland biomass and gave detailed insight in the sward-composition¬ - bioenergy relations such as: (i) the most relevant SR effect was the increase of energy yield for both combustion (annual GE increased by 26% from SR8→16 and by 65% from SR8→60) and anaerobic digestion (annual CH4 area increased by 22% from SR8→16 and by 49% from SR8→60) through a strong interaction of SR with biomass yield; (ii) legumes play a key role for the utilization of grassland biomass for energy production as they increase the energy content of the substrate (HHV and CH4 sub) and the energy yield (GE and CH4 area); (iii) combustion is the conversion technique that will yield the highest energy output but requires an improvement of the solid fuel quality in order to reduce the risk of corrosion, emission and slagging related problems. This was achieved through applying the IFBB-procedure, with reductions in ash (by 23%), N (28%), K (85%), Cl (56%) and S (59%) and equal levels of concentrations along the SR gradient.
Resumo:
Prediction of the solar wind conditions in near-Earth space, arising from both quasi-steady and transient structures, is essential for space weather forecasting. To achieve forecast lead times of a day or more, such predictions must be made on the basis of remote solar observations. A number of empirical prediction schemes have been proposed to forecast the transit time and speed of coronal mass ejections (CMEs) at 1 AU. However, the current lack of magnetic field measurements in the corona severely limits our ability to forecast the 1 AU magnetic field strengths resulting from interplanetary CMEs (ICMEs). In this study we investigate the relation between the characteristic magnetic field strengths and speeds of both magnetic cloud and noncloud ICMEs at 1 AU. Correlation between field and speed is found to be significant only in the sheath region ahead of magnetic clouds, not within the clouds themselves. The lack of such a relation in the sheaths ahead of noncloud ICMEs is consistent with such ICMEs being skimming encounters of magnetic clouds, though other explanations are also put forward. Linear fits to the radial speed profiles of ejecta reveal that faster-traveling ICMEs are also expanding more at 1 AU. We combine these empirical relations to form a prediction scheme for the magnetic field strength in the sheaths ahead of magnetic clouds and also suggest a method for predicting the radial speed profile through an ICME on the basis of upstream measurements.
Resumo:
Supercritical carbon dioxide (SC-CO(2)) extractions of Brazilian cherry (Eugenia uniflora L.) were carried out under varied conditions of pressure and temperature, according to a central composite 2(2) experimental design, in order to produce flavour-rich extracts. The composition of the extracts was evaluated by gas chromatography coupled with mass spectrometry (GC/MS). The abundance of the extracted compounds was then related to sensory analysis results, assisted by principal component and factorial discriminant analysis (PCA and FDA, respectively). The identified sesquiterpenes and ketones were found to strongly contribute to the characteristic flavour of the Brazilian cherry. The extracts also contained a variety of other volatile compounds, and part of the fruit wax contained long-chain hydrocarbons that according to multivariate analysis, contributed to the yield of the extracts, but not the flavour. Volatile phenolic compounds, to which antioxidant properties are attributed, were also present in the extracts in high proportion, regardless of the extraction conditions. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
This paper deals with semi-global C(k)-solvability of complex vector fields of the form L = partial derivative/partial derivative t + x(r) (a(x) + ib(x))partial derivative/partial derivative x, r >= 1, defined on Omega(epsilon) = (-epsilon, epsilon) x S(1), epsilon > 0, where a and b are C(infinity) real-valued functions in (-epsilon, epsilon). It is shown that the interplay between the order of vanishing of the functions a and b at x = 0 influences the C(k)-solvability at Sigma = {0} x S(1). When r = 1, it is permitted that the functions a and b of L depend on the x and t variables, that is, L = partial derivative/partial derivative t + x(a(x, t) + ib(x, t))partial derivative/partial derivative x, where (x, t) is an element of Omega(epsilon).
Resumo:
We study the Gevrey solvability of a class of complex vector fields, defined on Omega(epsilon) = (-epsilon, epsilon) x S(1), given by L = partial derivative/partial derivative t + (a(x) + ib(x))partial derivative/partial derivative x, b not equivalent to 0, near the characteristic set Sigma = {0} x S(1). We show that the interplay between the order of vanishing of the functions a and b at x = 0 plays a role in the Gevrey solvability. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
We present a sufficient condition for a zero of a function that arises typically as the characteristic equation of a linear functional differential equations of neutral type, to be simple and dominant. This knowledge is useful in order to derive the asymptotic behaviour of solutions of such equations. A simple characteristic equation, arisen from the study of delay equations with small delay, is analyzed in greater detail. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
[1] Iron is hypothesized to be an important micronutrient for ocean biota, thus modulating carbon dioxide uptake by the ocean biological pump. Studies have assumed that atmospheric deposition of iron to the open ocean is predominantly from mineral aerosols. For the first time we model the source, transport, and deposition of iron from combustion sources. Iron is produced in small quantities during fossil fuel burning, incinerator use, and biomass burning. The sources of combustion iron are concentrated in the industrialized regions and biomass burning regions, largely in the tropics. Model results suggest that combustion iron can represent up to 50% of the total iron deposited, but over open ocean regions it is usually less than 5% of the total iron, with the highest values (< 30%) close to the East Asian continent in the North Pacific. For ocean biogeochemistry the bioavailability of the iron is important, and this is often estimated by the fraction which is soluble ( Fe(II)). Previous studies have argued that atmospheric processing of the relatively insoluble Fe(III) occurs to make it more soluble ( Fe( II)). Modeled estimates of soluble iron amounts based solely on atmospheric processing as simulated here cannot match the variability in daily averaged in situ concentration measurements in Korea, which is located close to both combustion and dust sources. The best match to the observations is that there are substantial direct emissions of soluble iron from combustion processes. If we assume observed soluble Fe/black carbon ratios in Korea are representative of the whole globe, we obtain the result that deposition of soluble iron from combustion contributes 20-100% of the soluble iron deposition over many ocean regions. This implies that more work should be done refining the emissions and deposition of combustion sources of soluble iron globally.