975 resultados para choice test
Resumo:
Female mate choice decisions, which influence sexual selection, involve complex interactions between the 2 sexes and the environment. Theoretical models predict that male movement and spacing in the field should influence female sampling tactics, and in turn, females should drive the evolution of male movement and spacing to sample them optimally. Theoretically, simultaneous sampling of males using the best-of-n or comparative Bayes strategy should yield maximum mating benefits to females. We examined the ecological context of female mate sampling based on acoustic signals in the tree cricket Oecanthus henryi to determine whether the conditions for such optimal strategies were met in the field. These strategies involve recall of the quality and location of individual males, which in turn requires male positions to be stable within a night. Calling males rarely moved within a night, potentially enabling female sampling strategies that require recall. To examine the possibility of simultaneous acoustic sampling of males, we estimated male acoustic active spaces using information on male spacing, call transmission, and female hearing threshold. Males were found to be spaced far apart, and active space overlap was rare. We then examined female sampling scenarios by studying female spacing relative to male acoustic active spaces. Only 15% of sampled females could hear multiple males, suggesting that simultaneous mate sampling is rare in the field. Moreover, the relatively large distances between calling males suggest high search costs, which may favor threshold strategies that do not require memory.
Resumo:
This paper proposes a novel experimental test procedure to estimate the reliability of structural dynamical systems under excitations specified via random process models. The samples of random excitations to be used in the test are modified by the addition of an artificial control force. An unbiased estimator for the reliability is derived based on measured ensemble of responses under these modified inputs based on the tenets of Girsanov transformation. The control force is selected so as to reduce the sampling variance of the estimator. The study observes that an acceptable choice for the control force can be made solely based on experimental techniques and the estimator for the reliability can be deduced without taking recourse to mathematical model for the structure under study. This permits the proposed procedure to be applied in the experimental study of time-variant reliability of complex structural systems that are difficult to model mathematically. Illustrative example consists of a multi-axes shake table study on bending-torsion coupled, geometrically non-linear, five-storey frame under uni/bi-axial, non-stationary, random base excitation. Copyright (c) 2014 John Wiley & Sons, Ltd.
Resumo:
Seismic site characterization is the basic requirement for seismic microzonation and site response studies of an area. Site characterization helps to gauge the average dynamic properties of soil deposits and thus helps to evaluate the surface level response. This paper presents a seismic site characterization of Agartala city, the capital of Tripura state, in the northeast of India. Seismically, Agartala city is situated in the Bengal Basin zone which is classified as a highly active seismic zone, assigned by Indian seismic code BIS-1893, Indian Standard Criteria for Earthquake Resistant Design of Structures, Part-1 General Provisions and Buildings. According to the Bureau of Indian Standards, New Delhi (2002), it is the highest seismic level (zone-V) in the country. The city is very close to the Sylhet fault (Bangladesh) where two major earthquakes (M (w) > 7) have occurred in the past and affected severely this city and the whole of northeast India. In order to perform site response evaluation, a series of geophysical tests at 27 locations were conducted using the multichannel analysis of surface waves (MASW) technique, which is an advanced method for obtaining shear wave velocity (V (s)) profiles from in situ measurements. Similarly, standard penetration test (SPT-N) bore log data sets have been obtained from the Urban Development Department, Govt. of Tripura. In the collected data sets, out of 50 bore logs, 27 were selected which are close to the MASW test locations and used for further study. Both the data sets (V (s) profiles with depth and SPT-N bore log profiles) have been used to calculate the average shear wave velocity (V (s)30) and average SPT-N values for the upper 30 m depth of the subsurface soil profiles. These were used for site classification of the study area recommended by the National Earthquake Hazard Reduction Program (NEHRP) manual. The average V (s)30 and SPT-N classified the study area as seismic site class D and E categories, indicating that the city is susceptible to site effects and liquefaction. Further, the different data set combinations between V (s) and SPT-N (corrected and uncorrected) values have been used to develop site-specific correlation equations by statistical regression, as `V (s)' is a function of SPT-N value (corrected and uncorrected), considered with or without depth. However, after considering the data set pairs, a probabilistic approach has also been presented to develop a correlation using a quantile-quantile (Q-Q) plot. A comparison has also been made with the well known published correlations (for all soils) available in the literature. The present correlations closely agree with the other equations, but, comparatively, the correlation of shear wave velocity with the variation of depth and uncorrected SPT-N values provides a more suitable predicting model. Also the Q-Q plot agrees with all the other equations. In the absence of in situ measurements, the present correlations could be used to measure V (s) profiles of the study area for site response studies.
Resumo:
Designing and implementing thread-safe multithreaded libraries can be a daunting task as developers of these libraries need to ensure that their implementations are free from concurrency bugs, including deadlocks. The usual practice involves employing software testing and/or dynamic analysis to detect. deadlocks. Their effectiveness is dependent on well-designed multithreaded test cases. Unsurprisingly, developing multithreaded tests is significantly harder than developing sequential tests for obvious reasons. In this paper, we address the problem of automatically synthesizing multithreaded tests that can induce deadlocks. The key insight to our approach is that a subset of the properties observed when a deadlock manifests in a concurrent execution can also be observed in a single threaded execution. We design a novel, automatic, scalable and directed approach that identifies these properties and synthesizes a deadlock revealing multithreaded test. The input to our approach is the library implementation under consideration and the output is a set of deadlock revealing multithreaded tests. We have implemented our approach as part of a tool, named OMEN1. OMEN is able to synthesize multithreaded tests on many multithreaded Java libraries. Applying a dynamic deadlock detector on the execution of the synthesized tests results in the detection of a number of deadlocks, including 35 real deadlocks in classes documented as thread-safe. Moreover, our experimental results show that dynamic analysis on multithreaded tests that are either synthesized randomly or developed by third-party programmers are ineffective in detecting the deadlocks.
Resumo:
This article presents frequentist inference of accelerated life test data of series systems with independent log-normal component lifetimes. The means of the component log-lifetimes are assumed to depend on the stress variables through a linear stress translation function that can accommodate the standard stress translation functions in the literature. An expectation-maximization algorithm is developed to obtain the maximum likelihood estimates of model parameters. The maximum likelihood estimates are then further refined by bootstrap, which is also used to infer about the component and system reliability metrics at usage stresses. The developed methodology is illustrated by analyzing a real as well as a simulated dataset. A simulation study is also carried out to judge the effectiveness of the bootstrap. It is found that in this model, application of bootstrap results in significant improvement over the simple maximum likelihood estimates.
Resumo:
Elaborate male traits with no apparent adaptive value may have evolved through female mate discrimination. Tusks are an elaborate male-only trait in the Asian elephant that could potentially influence female mate choice. We examined the effect of male body size, tusk possession and musth status on female mate choice in an Asian elephant population. Large/musth males received positive responses from oestrous females towards courtship significantly more often than did small/non-musth males. Young, tusked non-musth males attempted courtship significantly more often than their tuskless peers, and received more positive responses (though statistically insignificant) than did tuskless males. A positive response did not necessarily translate into mating because of mate-guarding by a dominant male. Female elephants appear to choose mates based primarily on traits such as musth that signal direct fertility benefits through increased sperm received than for traits such as tusks that may signal only indirect fitness benefits.
Resumo:
An abundance of spectrum access and sensing algorithms are available in the dynamic spectrum access (DSA) and cognitive radio (CR) literature. Often, however, the functionality and performance of such algorithms are validated against theoretical calculations using only simulations. Both the theoretical calculations and simulations come with their attendant sets of assumptions. For instance, designers of dynamic spectrum access algorithms often take spectrum sensing and rendezvous mechanisms between transmitter-receiver pairs for granted. Test bed designers, on the other hand, either customize so much of their design that it becomes difficult to replicate using commercial off the shelf (COTS) components or restrict themselves to simulation, emulation /hardware-in-Ioop (HIL), or pure hardware but not all three. Implementation studies on test beds sophisticated enough to combine the three aforementioned aspects, but at the same time can also be put together using COTS hardware and software packages are rare. In this paper we describe i) the implementation of a hybrid test bed using a previously proposed hardware agnostic system architecture ii) the implementation of DSA on this test bed, and iii) the realistic hardware and software-constrained performance of DSA. Snapshot energy detector (ED) and Cumulative Summation (CUSUM), a sequential change detection algorithm, are available for spectrum sensing and a two-way handshake mechanism in a dedicated control channel facilitates transmitter-receiver rendezvous.
Resumo:
Semiconductor device junction temperatures are maintained within datasheet specified limits to avoid failure in power converters. Burn-in tests are used to ensure this. In inverters, thermal time constants can be large and burn-in tests are required to be performed over long durations of time. At higher power levels, besides increased production cost, the testing requires sources and loads that can handle high power. In this study, a novel method to test a high power three-phase grid-connected inverter is proposed. The method eliminates the need for high power sources and loads. Only energy corresponding to the losses is consumed. The test is done by circulating rated current within the three legs of the inverter. All the phase legs being loaded, the method can be used to test the inverter in both cases of a common or independent cooling arrangement for the inverter phase legs. Further, the method can be used with different inverter configurations - three- or four-wire and for different pulse width modulation (PWM) techniques. The method has been experimentally validated on a 24 kVA inverter for a four-wire configuration that uses sine-triangle PWM and a three-wire configuration that uses conventional space vector PWM.
Resumo:
A supercritical CO2 test facility is currently being developed at Indian Institute of Science, Bangalore, India to analyze the performance of a closed loop Brayton cycle for concentrated solar power (CSP) generation. The loop has been designed for an external heat input of 20 kW a pressure range of 75-135 bar, flow rate of 11 kg/min, and a maximum cycle temperature of 525 degrees C. The operation of the loop and the various parametric tests planned to be performed are discussed in this paper The paper addresses various aspects of the loop design with emphasis on design of various components such as regenerator and expansion device. The regenerator design is critical due to sharp property variations in CO2 occurring during the heat exchange process between the hot and cold streams. Two types of heat exchanger configurations 1) tube-in-tube (TITHE) and 2) printed circuit heat exchanger (PCHE) are analyzed and compared. A PCHE is found to be similar to 5 times compact compared to a TITHE for identical heat transfer and pressure drops. The expansion device is being custom designed to achieve the desired pressure drop for a range of operating temperatures. It is found that capillary of 5.5 mm inner diameter and similar to 2 meter length is sufficient to achieve a pressure drop from 130 to 75 bar at a maximum cycle temperature of 525 degrees C.
Resumo:
The current study analysed how the climbing perch Anabas testudineus an air-breathing freshwater fish make choice when a pair of food patches differing in the gain is presented. The results revealed no significant variation in the preference towards the patch of food material cumulated in one place over the same amount of food dispersed in a wider area and located at an equal distance. Additionally, enhancement of the value of dispersed or cumulated patch, by moving it towards the subject fish (spatial discounting) was also found to be ineffective in influencing the food patch utilisation in this species.
Resumo:
In nursery pollination mutualisms, which are usually obligate interactions, olfactory attraction of pollinators by floral volatile organic compounds (VOCs) is the main step in guaranteeing partner encounter. However, mechanisms ensuring the evolutionary stability of dioecious fig-pollinator mutualisms, in which female fig trees engage in pollination by deceit resulting in zero reproductive success of pollinators that visit them, are poorly understood. In dioecious figs, individuals of each sex should be selected to produce odours that their pollinating wasps cannot distinguish, especially since pollinators have usually only one choice of a nursery during their lifetime. To test the hypothesis of intersexual chemical mimicry, VOCs emitted by pollen-receptive figs of seven dioecious species were compared using headspace collection and gas chromatography-mass spectrometry analysis. First, fig-flower scents varied significantly among species, allowing host-species recognition. Second, in species in which male and female figs are synchronous, intersexual VOC variation was not significant. However, in species where figs of both sexes flower asynchronously, intersexual variation of VOCs was detectable. Finally, with one exception, there was no sexual dimorphism in scent quantity. We show that there are two ways to use scent to be a dioecious fig based on differences in flowering synchrony between the sexes.
Resumo:
In the present paper the rarefied gas how caused by the sudden change of the wall temperature and the Rayleigh problem are simulated by the DSMC method which has been validated by experiments both in global flour field and velocity distribution function level. The comparison of the simulated results with the accurate numerical solutions of the B-G-K model equation shows that near equilibrium the BG-K equation with corrected collision frequency can give accurate result but as farther away from equilibrium the B-G-K equation is not accurate. This is for the first time that the error caused by the B-G-K model equation has been revealed.
Resumo:
Micro-indentation test at scales on the order of sub-micron has shown that the measured hardness increases strongly with decreasing indent depth or indent size, which is frequently referred to as the size effect. Simultaneously, at micron or sub-micron scale, the material microstructure size also has an important influence on the measured hardness. This kind of effect, such as the crystal grain size effect, thin film thickness effect, etc., is called the geometrical effect by here. In the present research, in order to investigate the size effect and the geometrical effect, the micro-indentation experiments are carried out respectively for single crystal copper and aluminum, for polycrystal aluminum, as well as for a thin film/substrate system, Ti/Si3N4. The size effect and geometrical effect are displayed experimentally. Moreover, using strain gradient plasticity theory, the size effect and the geometrical effect are simulated. Through comparing experimental results with simulation results, length-scale parameter appearing in the strain gradient theory for different cases is predicted. Furthermore, the size effect and the geometrical effect are interpreted using the geometrically necessary dislocation concept and the discrete dislocation theory. Member Price: $0; Non-Member Price: $25.00