977 resultados para chaotic dynamical systems


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Some dynamical properties present in a problem concerning the acceleration of particles in a wave packet are studied. The dynamics of the model is described in terms of a two-dimensional area preserving map. We show that the phase space is mixed in the sense that there are regular and chaotic regions coexisting. We use a connection with the standard map in order to find the position of the first invariant spanning curve which borders the chaotic sea. We find that the position of the first invariant spanning curve increases as a power of the control parameter with the exponent 2/3. The standard deviation of the kinetic energy of an ensemble of initial conditions obeys a power law as a function of time, and saturates after some crossover. Scaling formalism is used in order to characterise the chaotic region close to the transition from integrability to nonintegrability and a relationship between the power law exponents is derived. The formalism can be applied in many different systems with mixed phase space. Then, dissipation is introduced into the model and therefore the property of area preservation is broken, and consequently attractors are observed. We show that after a small change of the dissipation, the chaotic attractor as well as its basin of attraction are destroyed, thus leading the system to experience a boundary crisis. The transient after the crisis follows a power law with exponent -2. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper presents the control and synchronization of chaos by designing linear feedback controllers. The linear feedback control problem for nonlinear systems has been formulated under optimal control theory viewpoint. Asymptotic stability of the closed-loop nonlinear system is guaranteed by means of a Lyapunov function which can clearly be seen to be the solution of the Hamilton-Jacobi-Bellman equation thus guaranteeing both stability and optimality. The formulated theorem expresses explicitly the form of minimized functional and gives the sufficient conditions that allow using the linear feedback control for nonlinear system. The numerical simulations were provided in order to show the effectiveness of this method for the control of the chaotic Rossler system and synchronization of the hyperchaotic Rossler system. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this work, the linear and nonlinear feedback control techniques for chaotic systems were been considered. The optimal nonlinear control design problem has been resolved by using Dynamic Programming that reduced this problem to a solution of the Hamilton-Jacobi-Bellman equation. In present work the linear feedback control problem has been reformulated under optimal control theory viewpoint. The formulated Theorem expresses explicitly the form of minimized functional and gives the sufficient conditions that allow using the linear feedback control for nonlinear system. The numerical simulations for the Rössler system and the Duffing oscillator are provided to show the effectiveness of this method. Copyright © 2005 by ASME.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A robust exponential function based controller is designed to synchronize effectively a given class of Chua's chaotic systems. The stability of the drive-response systems framework is proved through the Lyapunov stability theory. Computer simulations are given to illustrate and verify the method. © 2013 Patrick Louodop et al.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

20 years after the discovery of the first planets outside our solar system, the current exoplanetary population includes more than 700 confirmed planets around main sequence stars. Approximately 50% belong to multiple-planet systems in very diverse dynamical configurations, from two-planet hierarchical systems to multiple resonances that could only have been attained as the consequence of a smooth large-scale orbital migration. The first part of this paper reviews the main detection techniques employed for the detection and orbital characterization of multiple-planet systems, from the (now) classical radial velocity (RV) method to the use of transit time variations (TTV) for the identification of additional planetary bodies orbiting the same star. In the second part we discuss the dynamical evolution of multi-planet systems due to their mutual gravitational interactions. We analyze possible modes of motion for hierarchical, secular or resonant configurations, and what stability criteria can be defined in each case. In some cases, the dynamics can be well approximated by simple analytical expressions for the Hamiltonian function, while other configurations can only be studied with semi-analytical or numerical tools. In particular, we show how mean-motion resonances can generate complex structures in the phase space where different libration islands and circulation domains are separated by chaotic layers. In all cases we use real exoplanetary systems as working examples.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A chaotic encryption algorithm is proposed based on the "Life-like" cellular automata (CA), which acts as a pseudo-random generator (PRNG). The paper main focus is to use chaos theory to cryptography. Thus, CA was explored to look for this "chaos" property. This way, the manuscript is more concerning on tests like: Lyapunov exponent, Entropy and Hamming distance to measure the chaos in CA, as well as statistic analysis like DIEHARD and ENT suites. Our results achieved higher randomness quality than others ciphers in literature. These results reinforce the supposition of a strong relationship between chaos and the randomness quality. Thus, the "chaos" property of CA is a good reason to be employed in cryptography, furthermore, for its simplicity, low cost of implementation and respectable encryption power. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The Assimilation in the Unstable Subspace (AUS) was introduced by Trevisan and Uboldi in 2004, and developed by Trevisan, Uboldi and Carrassi, to minimize the analysis and forecast errors by exploiting the flow-dependent instabilities of the forecast-analysis cycle system, which may be thought of as a system forced by observations. In the AUS scheme the assimilation is obtained by confining the analysis increment in the unstable subspace of the forecast-analysis cycle system so that it will have the same structure of the dominant instabilities of the system. The unstable subspace is estimated by Breeding on the Data Assimilation System (BDAS). AUS- BDAS has already been tested in realistic models and observational configurations, including a Quasi-Geostrophicmodel and a high dimensional, primitive equation ocean model; the experiments include both fixed and“adaptive”observations. In these contexts, the AUS-BDAS approach greatly reduces the analysis error, with reasonable computational costs for data assimilation with respect, for example, to a prohibitive full Extended Kalman Filter. This is a follow-up study in which we revisit the AUS-BDAS approach in the more basic, highly nonlinear Lorenz 1963 convective model. We run observation system simulation experiments in a perfect model setting, and with two types of model error as well: random and systematic. In the different configurations examined, and in a perfect model setting, AUS once again shows better efficiency than other advanced data assimilation schemes. In the present study, we develop an iterative scheme that leads to a significant improvement of the overall assimilation performance with respect also to standard AUS. In particular, it boosts the efficiency of regime’s changes tracking, with a low computational cost. Other data assimilation schemes need estimates of ad hoc parameters, which have to be tuned for the specific model at hand. In Numerical Weather Prediction models, tuning of parameters — and in particular an estimate of the model error covariance matrix — may turn out to be quite difficult. Our proposed approach, instead, may be easier to implement in operational models.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A new proposal to have secure communications in a system is reported. The basis is the use of a synchronized digital chaotic systems, sending the information signal added to an initial chaos. The received signal is analyzed by another chaos generator located at the receiver and, by a logic boolean function of the chaotic and the received signals, the original information is recovered. One of the most important facts of this system is that the bandwidth needed by the system remain the same with and without chaos.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We give a selective review of quantum mechanical methods for calculating and characterizing resonances in small molecular systems, with an emphasis on recent progress in Chebyshev and Lanczos iterative methods. Two archetypal molecular systems are discussed: isolated resonances in HCO, which exhibit regular mode and state specificity, and overlapping resonances in strongly bound HO2, which exhibit irregular and chaotic behavior. Recent progresses for non-zero total angular momentum J calculations of resonances including parallel computing models are also included and future directions in this field are discussed.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Melnikov's method is used to analytically predict the onset of chaotic instability in a rotating body with internal energy dissipation. The model has been found to exhibit chaotic instability when a harmonic disturbance torque is applied to the system for a range of forcing amplitude and frequency. Such a model may be considered to be representative of the dynamical behavior of a number of physical systems such as a spinning spacecraft. In spacecraft, disturbance torques may arise under malfunction of the control system, from an unbalanced rotor, from vibrations in appendages or from orbital variations. Chaotic instabilities arising from such disturbances could introduce uncertainties and irregularities into the motion of the multibody system and consequently could have disastrous effects on its intended operation. A comprehensive stability analysis is performed and regions of nonlinear behavior are identified. Subsequently, the closed form analytical solution for the unperturbed system is obtained in order to identify homoclinic orbits. Melnikov's method is then applied on the system once transformed into Hamiltonian form. The resulting analytical criterion for the onset of chaotic instability is obtained in terms of critical system parameters. The sufficient criterion is shown to be a useful predictor of the phenomenon via comparisons with numerical results. Finally, for the purposes of providing a complete, self-contained investigation of this fundamental system, the control of chaotic instability is demonstated using Lyapunov's method.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The work is supported in part by NSFC (Grant no. 61172070), IRT of Shaanxi Province (2013KCT-04), EPSRC (Grant no.Ep/1032606/1).

Relevância:

40.00% 40.00%

Publicador:

Resumo:

"In this paper we extend the earlier treatment of out-of-equilibrium mesoscopic fluctuations in glassy systems in several significant ways. First, via extensive simulations, we demonstrate that models of glassy behavior without quenched disorder display scalings of the probability of local two-time correlators that are qualitatively similar to that of models with short-ranged quenched interactions. The key ingredient for such scaling properties is shown to be the development of a criticallike dynamical correlation length, and not other microscopic details. This robust data collapse may be described in terms of a time-evolving "extreme value" distribution. We develop a theory to describe both the form and evolution of these distributions based on a effective sigma model approach."

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this paper we demonstrate the feasibility and utility of an augmented version of the Gibbs ensemble Monte Carlo method for computing the phase behavior of systems with strong, extremely short-ranged attractions. For generic potential shapes, this approach allows for the investigation of narrower attractive widths than those previously reported. Direct comparison to previous self-consistent Ornstein-Zernike approximation calculations is made. A preliminary investigation of out-of-equilibrium behavior is also performed. Our results suggest that the recent observations of stable cluster phases in systems without long-ranged repulsions are intimately related to gas-crystal and metastable gas-liquid phase separation.