904 resultados para cell adhesion molecules
Resumo:
It has been shown that prenatal light exposure and corticosterone improve memory retention of dark hatched chicks. The object of this study was to explore the neural mechanisms underlying the effect of prenatal light exposure and corticosterone on memory retention of chicks. To detect the effect of different prenatal treatments on memory retention of chicks, we used one-trial passive avoidance model. To examine the expression of glucocorticoid receptor (GR), neural cell adhesion molecule (NCAM), growth-associated protein 43 (GAP-43) and polysialic acid (PSA) in HV and LPO of chick brain, we used immunohistochemical method. Prenatal light exposure and glucocorticoid (corticosterone, dexamthesone) administered in embryonic day 20 (E20) markedly improve memory retention in dark hatched chicks. Light plays a critical role in improving memory. The critical exposure period is E19 and E20. The effect of these two hormones and light exposure can be significantly blocked by their receptor antagonist administration respectively. The light, corticosterone and particularly darkness significantly up-regulated the level of GR; the expression of NCAM and GAP-43 in HV and LPO peaked in E20 in normal hatched chicks and was significantly increased by light exposure and corticosterone. Protein synthesis inhibitor anisomycin markedly reduced the effect of light exposure but partially reduced the effect of corticosterone; light exposure and corticosterone in E20 significantly up-regulated PSA expression. Removing PSA from NCAM significantly retarded the effect of corticosterone on memory retention in chicks. Therefore, The effects of prenatal light exposure and corticosterone on memory retention are mediated via both corticosteroid receptors. The effects of both prenatal light and corticosterone might at first change the plasticity of the brain by up-regulation the synthesis and modification of proteins, and then influence the behavior performance of the chicks.
Resumo:
Sonic Hedgehog (Shh) signaling is an important determinant of vertebrate retinal ganglion cell (RGC) development. In mice, there are two major RGC populations: (1) the Islet2-expressing contralateral projecting (c)RGCs, which both produce and respond to Shh; and (2) the Zic2-expressing ipsilateral projecting RGCs (iRGCs), which lack Shh expression. In contrast to cRGCs, iRGCs, which are generated in the ventrotemporal crescent (VTC) of the retina, specifically express Boc, a cell adhesion molecule that acts as a high-affinity receptor for Shh. In Boc −/− mutant mice, the ipsilateral projection is significantly decreased. Here, we demonstrate that this phenotype results, at least in part, from the misspecification of a proportion of iRGCs. In Boc−/− VTC, the number of Zic2-positive RGCs is reduced, whereas more Islet2/Shh-positive RGCs are observed, a phenotype also detected in Zic2 and Foxd1 null embryos.
Resumo:
Introduction: There is accumulating evidence of an increased risk of cardiovascular morbidity and mortality in rheumatoid arthritis patients. A combination of both traditional cardiovascular risks and rheumatoid specific factors appear to be responsible for driving this phenomenon. Rheumatoid arthritis has been an orphan of cardiologists in the past and rheumatologists themselves are not good at CVD screening. Identifying the extent of preclinical atherosclerosis in RA patients will help us to appreciate the magnitude of this serious problem in an Irish population. Methods: We undertook a cross-sectional study of 63 RA patients and 48 OA controls and compared the 2 groups with respect to 1) traditional CV risks factors, 2) serum biomarkers of inflammation, including CRP, TNFα, IL6 and PAI-1, 3) carotid intima-media thickness (cIMT), carotid plaque and ankle-brachial index (ABI) as markers of pre-clinical atherosclerosis, 4) biochemical and ultrasonic measures of endothelial dysfunction and 5) serum and echocardiographic measures of diastolic dysfunction. Within the RA group, we also investigated for associations between markers of inflammation, subclinical atherosclerosis and diastolic dysfunction. Results: Prevalence of traditional CV risks was similar in the RA and OA groups. A number of biomarkers of inflammation were significantly higher in the RA group: CRP, fibrinogen, IL- 2, -4, -6, TNFα. PAI-1, a marker of thrombosis, correlated with disease activity and subclinical atherosclerosis in RA patients. With regard to subclinical atherosclerosis measures, RA patients had a significantly lower ABI than OA patients. Carotid plaque and cIMT readings were similar in RA and OA patients. Assessment of endothelial function revealed that RA patients had significantly higher concentrations of adhesion molecules, in particular sero-positive RA patients and RA smokers. Adhesion molecule concentrations were associated with markers of diastolic dysfunction in RA. Urine PCR, another marker of endothelial dysfunction also correlated with diastolic dysfunction in RA. Assessment of endothelial function with flow mediated dilatation (FMD) found no difference between the RA and OA groups. Disease activity scores in RA patients were associated with endothelial dysfunction, as assessed by FMD. Conclusions: We did not find significant differences in measures of subclinical atherosclerosis, flow mediated dilatation or diastolic function between RA and OA patients. This is most likely in part due to the fact that there is increasing evidence that OA has an inflammatory component to its pathogenesis and is associated with metabolic syndrome and increased CV risk. We reported a significant association between urinary PCR and measures of diastolic dysfunction. Urinary PCR may be a useful screening tool for diastolic dysfunction in RA. The association between RA disease activity and measures of vascular function supports the theory that the excess cardiovascular burden in RA is linked to uncontrolled inflammation.
Resumo:
We have identified a patient with a number of neutrophil dysfunctions. The patient was a female baby who lived for 8 months. During her life, she developed severe bacterial infections and showed omphalitis, impaired wound healing, and a pronounced leukocytosis. She was not a patient with leukocyte adhesion deficiency, because all leukocyte CD18 complex proteins were expressed at normal levels. Yet, neutrophil polarization and chemotaxis to platelet-activating factor, leukotriene B4, or formyl-methionyl-leucyl-phenylalanine (FMLP) were completely absent. We found a strong defect in actin polymerization in response to chemotactic stimuli, but only a retarded or even normal reaction with other stimuli. This indicates that the cellular dysfunctions were not due to an intrinsic defect in actin metabolism. Instead, the regulation of actin polymerization with chemotactic stimuli seemed to be defective. We concentrated on FMLP-induced responses in the patient's neutrophils. Functions dependent on activation of complement receptor type 3, such as aggregation or adherence to endothelial cells, were normally induced. Binding to serum-coated coverslips was normal in cell number; however, spreading was not observed. Exocytosis from the specific granules was readily induced. In contrast, FMLP failed to induce a respiratory burst activity or degranulation of the azurophil granules. FMLP induced a normal increase in free intracellular Ca2+, but a decreased formation of diglycerides (especially the 1-O-alkyl,2-acyl compounds). Thus, we have described a patient whose neutrophils show a severe defect in functional activation via chemotaxin receptors, resulting in a selective absence of NADPH oxidase activity, exocytosis from the azurophil granules, and actin polymerization. Our findings show that actin polymerization for neutrophil spreading and locomotion is regulated differently from that for phagocytosis. Also, the release of azurophil and specific granule contents is clearly shown to be regulated in a different way.
Resumo:
Current strategies to limit macrophage adhesion, fusion and fibrous capsule formation in the foreign body response have focused on modulating material surface properties. We hypothesize that topography close to biological scale, in the micron and nanometric range, provides a passive approach without bioactive agents to modulate macrophage behavior. In our study, topography-induced changes in macrophage behavior was examined using parallel gratings (250 nm-2 mum line width) imprinted on poly(epsilon-caprolactone) (PCL), poly(lactic acid) (PLA) and poly(dimethyl siloxane) (PDMS). RAW 264.7 cell adhesion and elongation occurred maximally on 500 nm gratings compared to planar controls over 48 h. TNF-alpha and VEGF secretion levels by RAW 264.7 cells showed greatest sensitivity to topographical effects, with reduced levels observed on larger grating sizes at 48 h. In vivo studies at 21 days showed reduced macrophage adhesion density and degree of high cell fusion on 2 mum gratings compared to planar controls. It was concluded that topography affects macrophage behavior in the foreign body response on all polymer surfaces examined. Topography-induced changes, independent of surface chemistry, did not reveal distinctive patterns but do affect cell morphology and cytokine secretion in vitro, and cell adhesion in vivo particularly on larger size topography compared to planar controls.
Resumo:
The growth of stem cells can be modulated by physical factors such as extracellular matrix nanotopography. We hypothesize that nanotopography modulates cell behavior by changing the integrin clustering and focal adhesion (FA) assembly, leading to changes in cytoskeletal organization and cell mechanical properties. Human mesenchymal stem cells (hMSCs) cultured on 350 nm gratings of tissue-culture polystyrene (TCPS) and polydimethylsiloxane (PDMS) showed decreased expression of integrin subunits alpha2, alpha , alpha V, beta2, beta 3 and beta 4 compared to the unpatterned controls. On gratings, the elongated hMSCs exhibited an aligned actin cytoskeleton, while on unpatterned controls, spreading cells showed a random but denser actin cytoskeleton network. Expression of cytoskeleton and FA components was also altered by the nanotopography as reflected in the mechanical properties measured by atomic force microscopy (AFM) indentation. On the rigid TCPS, hMSCs on gratings exhibited lower instantaneous and equilibrium Young's moduli and apparent viscosity. On the softer PDMS, the effects of nanotopography were not significant. However, hMSCs cultured on PDMS showed lower cell mechanical properties than those on TCPS, regardless of topography. These suggest that both nanotopography and substrate stiffness could be important in determining mechanical properties, while nanotopography may be more dominant in determining the organization of the cytoskeleton and FAs.
Resumo:
Mechanical stimuli are important factors that regulate cell proliferation, survival, metabolism and motility in a variety of cell types. The relationship between mechanical deformation of the extracellular matrix and intracellular deformation of cellular sub-regions and organelles has not been fully elucidated, but may provide new insight into the mechanisms involved in transducing mechanical stimuli to biological responses. In this study, a novel fluorescence microscopy and image analysis method was applied to examine the hypothesis that mechanical strains are fully transferred from a planar, deformable substrate to cytoplasmic and intranuclear regions within attached cells. Intracellular strains were measured in cells derived from the anulus fibrosus of the intervertebral disc when attached to an elastic silicone membrane that was subjected to tensile stretch. Measurements indicated cytoplasmic strains were similar to those of the underlying substrate, with a strain transfer ratio (STR) of 0.79. In contrast, nuclear strains were much smaller than those of the substrate, with an STR of 0.17. These findings are consistent with previous studies indicating nuclear stiffness is significantly greater than cytoplasmic stiffness, as measured using other methods. This study provides a novel method for the study of cellular mechanics, including a new technique for measuring intranuclear deformations, with evidence of differential magnitudes and patterns of strain transferred from the substrate to cell cytoplasm and nucleus.
Resumo:
Intercellular adhesion molecule 1 (ICAM-1) is a transmembrane protein found on the surface of vascular endothelial cells (ECs). Its expression is upregulated at inflammatory sites, allowing for targeted delivery of therapeutics using ICAM-1-binding drug carriers. Engagement of multiple copies of ICAM-1 by these drug carriers induces cell adhesion molecule (CAM)-mediated endocytosis, which results in trafficking of carriers to lysosomes and across ECs. Knowledge about the regulation behind CAM-mediated endocytosis can help improve drug delivery, but questions remain about these regulatory mechanisms. Furthermore, little is known about the natural function of this endocytic pathway. To address these gaps in knowledge, we focused on two natural binding partners of ICAM-1 that potentially elicit CAM-mediated endocytosis: leukocytes (which bind ICAM-1 via β2 integrins) and fibrin polymers (a main component of blood clots which binds ICAM-1 via the γ3 sequence). First, inspired by properties of these natural binding partners, we varied the size and targeting moiety of model drug carriers to determine how these parameters affect CAM-mediated endocytosis. Increasing ICAM-1-targeted carrier size slowed carrier uptake kinetics, reduced carrier trafficking to lysosomes, and increased carrier transport across ECs. Changing targeting moieties from antibodies to peptides decreased particle binding and uptake, lowered trafficking to lysosomes, and increased transport across ECs. Second, using cell culture models of leukocyte/EC interactions, inhibiting regulatory elements of the CAM-mediated pathway disrupted leukocyte sampling, a process crucial to leukocyte crossing of endothelial layers (transmigration). This inhibition also decreased leukocyte transmigration across ECs, specifically through the transcellular route, which occurs through a single EC without disassembly of cell-cell junctions. Third, fibrin meshes, which mimic blood clot fragments/remnants, bound to ECs at ICAM-1-enriched sites and were internalized by the endothelium. Inhibiting the CAM-mediated pathway disrupted this uptake. Following endocytosis, fibrin meshes trafficked to lysosomes where they were degraded. In mouse models, CAM-mediated endocytosis of fibrin meshes appeared to remove fibrin remnants at the endothelial surface, preventing re-initiation of the coagulation cascade. Overall, these results support a link between CAM-mediated endocytosis and leukocyte transmigration as well as uptake of fibrin materials by ECs. Furthermore, these results will guide the future design of ICAM-1-targeted carrier-assisted therapies.
Resumo:
Multiple lines of evidence suggest that elevated plasma lipoprotein(a) (Lp(a)) concentrations are a significant risk factor for the development of a number of vascular diseases including coronary heart disease and stroke. Lp(a) consists of a low-density lipoprotein (LDL)-like moiety and an unique glycoprotein, apolipoprotein(a) (apo(a)), that is covalently attached to the apolipoproteinB-100 (apoB-100) component of LDL by a single disulfide bond. Many studies have suggested a role for Lp(a) in the process of endothelial dysfunction. Indeed, Lp(a) has been shown to increase both the expression of adhesion molecules on endothelial cells (EC), as well as monocyte and leukocyte chemotactic activity in these cells. We have previously demonstrated that Lp(a), through its apo(a) moiety, increases actomyosin-driven EC contraction which, as a consequence, increases EC permeability. In this thesis, we have demonstrated a role for the strong lysine-binding site in the kringle IV type 10 domain of apo(a) in increasing EC permeability, which occurs through a Rho/Rho kinase-dependent pathway. We have further validated these findings using mouse mesenteric arteries in a pressure myograph system. We also have dissected another major signaling pathway initiated by apo(a) that involves in a disruption of adherens junctions in EC. In this pathway, apo(a)/Lp(a) activates the PI3K/Akt/GSK3β-dependent pathway to facilitate nuclear translocation of beta-catenin. In the nucleus beta-catenin induced the expression of cyclooxygenase-2 (COX-2) and the secretion of prostaglandin E2 (PGE2) from the EC. Finally, we have presented data to suggest a novel inflammatory role for apo(a) in which it induces the activation of nuclear factor-kappaB through promotion of the dissociation of IkappaB from the inactive cytoplasmic complex; this allows the nuclear translocation of NFkappaB with attendant effects on the transcription of pro-inflammatory genes. Taken together, our findings may facilitate the development of new drug targets for mitigating the harmful effects of Lp(a) on vascular EC which corresponds to an early step in the process of atherogenesis.
Resumo:
Atherosclerosis has an inflammatory basis, with cytokines, cellular adhesion molecules and pro-inflammatory cells having important roles in the initiation and progression of this process. Interleukin (IL) 6, IL-10 and transforming growth factor (TGF) β have been proposed as important modulators of the atherosclerotic process, with IL-6 having a pro-inflammatory, atherogenic effect and IL-10 and TGF-β having anti-inflammatory, protective roles. The possible role of functional polymorphisms in the promoter regions of the IL-6, IL-10 and TGF-β genes in the susceptibility to ischaemic heart disease (IHD) was investigated in a well-defined Irish population using two recently described family-based tests of association. We genotyped 1,012 individuals from 386 families with at least one member prematurely affected with IHD. Using the combined transmission disequilibrium test (TDT)/sib-TDT and the pedigree disequilibrium test, no association between any of the IL-6 -174G/C, IL-10 -1082G/A and TGF-β -509C/T polymorphisms and IHD was found. Our data demonstrate that, in an Irish population, these polymorphisms are not associated with IHD. © Springer-Verlag 2004.
Resumo:
Cytokines regulate lymphocyte development and differentiation, but precisely how they control these processes is still poorly understood. By using microarray technology to detect cytokine-induced genes, we identified a cDNA encoding Cybr, which was increased markedly in cells incubated with IL-2 and IL-12. The mRNA was most abundant in hematopoietic cells and tissues. The predicted amino acid sequence is similar to that of GRP-1-associated protein (GRASP), a recently identified retinoic acid-induced cytohesin-binding protein. Physical interaction, dependent on the coiled-coil domains of Cybr and cytohesin-1, was demonstrated by coimmunoprecipitation of the overexpressed proteins from 293T cells. Cytohesin-1, in addition to its role in cell adhesion, is a guanine nucleotide-exchange protein activator of ARF GTPases. Acceleration of guanosine 5'-O-(thiotriphosphate) binding to ARF by cytohesin-1 in vitro was enhanced by Cybr. Because the binding protein modified activation of ADP ribosylation factor by cytohesin-1, we designate this cytokine-inducible protein Cybr (cytohesin binder and regulator).
Resumo:
Hyperglycemia increases expression of platelet-derived growth factor (PDGF)-beta receptor and potentiates chemotaxis to PDGF-BB in human aortic vascular smooth muscle cells (VSMCs) via PI3K and ERK/MAPK signaling pathways. The purpose of this study was to determine whether increased activation of protein kinase C (PKC) isoforms had a modulatory effect on the PI3K and ERK/MAPK pathways, control of cell adhesiveness, and movement. All known PKC isoforms were assessed but only PKC alpha and PKC beta II levels were increased in 25 mmol/L glucose. However, only PKC beta II inhibition affected (decreased) PI3K pathway and MAPK pathway activities and inhibited PDGF-beta receptor upregulation in raised glucose, and specific MAPK inhibition was required to completely block the effect of glucose. In raised glucose conditions, activity of the ERK/MAPK pathway, PI3K pathway, and PKC beta II were all sensitive to aldose reductase inhibition. Chemotaxis to PDGF-BB (360 pmol/L), absent in 5 mmol/L glucose, was present in raised glucose and could be blocked by PKC beta II inhibition. Formation of lamellipodia was dependent on PI3K activation and filopodia on MAPK activation; both lamellipodia and filopodia were eliminated when PKC beta II was inhibited. FAK phosphorylation and cell adhesion were reduced by PI3K inhibition, and although MAPK inhibition prevented chemotaxis, it did not affect FAK phosphorylation or cell adhesiveness. In conclusion, chemotaxis to PDGF-BB in 25 mmol/L glucose is PKC beta II-dependent and requires activation of both the PI3K and MAPK pathways. Changes in cell adhesion and migration speed are mediated mainly through the PI3K pathway.
Resumo:
PURPOSE: A critical event in the pathogenesis of diabetic retinopathy is the inappropriate adherence of leukocytes to the retinal capillaries. Advanced glycation end-products (AGEs) are known to play a role in chronic inflammatory processes, and the authors postulated that these adducts may play a role in promoting pathogenic increases in proinflammatory pathways within the retinal microvasculature. METHODS: Retinal microvascular endothelial cells (RMECs) were treated with glycoaldehyde-modified albumin (AGE-Alb) or unmodified albumin (Alb). NFkappaB DNA binding was measured by electromobility shift assay (EMSA) and quantified with an ELISA: In addition, the effect of AGEs on leukocyte adhesion to endothelial cell monolayers was investigated. Further studies were performed in an attempt to confirm that this was AGE-induced adhesion by co-incubation of AGE-treated cells with soluble receptor for AGE (sRAGE). Parallel in vivo studies of nondiabetic mice assessed the effect of intraperitoneal delivery of AGE-Alb on ICAM-1 mRNA expression, NFkappaB DNA-binding activity, leukostasis, and blood-retinal barrier breakdown. RESULTS: Treatment with AGE-Alb significantly enhanced the DNA-binding activity of NFkappaB (P = 0.0045) in retinal endothelial cells (RMECs) and increased the adhesion of leukocytes to RMEC monolayers (P = 0.04). The latter was significantly reduced by co-incubation with sRAGE (P <0.01). Mice infused with AGE-Alb demonstrated a 1.8-fold increase in ICAM-1 mRNA when compared with control animals (P <0.001, n = 20) as early as 48 hours, and this response remained for 7 days of treatment. Quantification of retinal NFkappaB demonstrated a threefold increase with AGE-Alb infusion in comparison to control levels (AGE Alb versus Alb, 0.23 vs. 0.076, P <0.001, n = 10 mice). AGE-Alb treatment of mice also caused a significant increase in leukostasis in the retina (AGE-Alb versus Alb, 6.89 vs. 2.53, n = 12, P <0.05) and a statistically significant increase in breakdown of the blood-retinal barrier (AGE Alb versus Alb, 8.2 vs. 1.6 n = 10, P <0.001). CONCLUSIONS: AGEs caused upregulation of NFkappaB in the retinal microvascular endothelium and an AGE-specific increase in leukocyte adhesion in vitro was also observed. In addition, increased leukocyte adherence in vivo was demonstrated that was accompanied by blood-retinal barrier dysfunction. These findings add further evidence to the thinking that AGEs may play an important role in the pathogenesis of diabetic retinopathy.
Resumo:
Aqueous humor is actively produced in the ciliary epithelium of the anterior chamber and has important functions for the eye. Under normal physiological conditions, the inflow and outflow of the aqueous humor are tightly regulated, but in the pathologic state this balance is lost. Aqueous outflow involves structures of the anterior chamber and experiences most resistance at the level of the trabecular meshwork (TM) that acts as a filter. The modulation of the TM structure regulates the filter and its mechanism remains poorly understood. Proteomic analyses have identified cochlin, a protein of poorly understood function, in the glaucomatous TM but not in healthy control TM from human cadaver eyes. The presence of cochlin has subsequently been confirmed by Western and immunohistochemical analyses. Functionally, cochlin undergoes multimerization induced by shear stress and other changes in the microenvironment. Cochlin along with mucopolysaccharide deposits have been found in the TM of glaucoma patients and in the inner ear of subjects affected by the hearing disorder DNFA9, a late onset, progressive disease that also involves alterations in fluid shear regimes. In vitro, cochlin induces aggregation of primary TM cells suggesting a role in cell adhesion, possibly in mechanosensation, and in modulation of the TM filter.
Resumo:
There is currently a need to expand the range of graft materials available to orthopaedic surgeons. This study investigated the effect of ternary phosphate based glass (PBG) compositions on the behaviour of osteoblast and osteoblast-like cells. PBGs of the formula in mol% P2O5 (50)-CaO (50-X)-Na2O (X), where X was either 2, 4, 6, 8 or 10 were produced and their influence on the proliferation, differentiation and death in vitro of adult human bone marrow stromal cells (hBMSCs) and human fetal osteoblast 1.19 (HFOB 1.19) cells were assessed. Tissue culture plastic (TCP) and hydroxyapatite (HA) were used as controls. Exposure to PBGs in culture inhibited cell adhesion, proliferation and increased cell death in both cell types studied. There was no significant difference in %cell death between the PBGs which was significantly greater than the controls. However, compared to other PBGs, a greater number of cells was found on the 48 mol% CaO which may have been due to either increased adherence, proliferation or both. This composition was capable of supporting osteogenic proliferation and early differentiation and supports the notion that chemical modification of the glass could to lead to a more biologically compatible substrate with the potential to support osteogenic grafting. Realisation of this potential should lead to the development of novel grafting strategies for the treatment of problematic bone defects.