962 resultados para cassava by-product flour


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The thermo-chemical conversion of green microalgae Chlamydomonas reinhardtii wild type (CCAP 11/32C), its cell wall deficient mutant C. reinhardtii CW15 (CCAP 11/32CW15) and Chlorella vulgaris (CCAP 211/11B) as well as their proteins and lipids was studied under conditions of intermediate pyrolysis. The microalgae were characterised for ultimate and gross chemical composition, lipid composition and extracted products were analysed by Thermogravimetric analysis (TG/DTG) and Pyrolysis-gaschromatography/mass-spectrometry (Py-GC/MS). Proteins accounted for almost 50% and lipids 16-22 % of dry weight of cells with little difference in the lipid compositions between the C. reinhardtii wild type and the cell wall mutant. During TGA analysis, each biomass exhibited three stages of decomposition, namely dehydration, devolatilization and decomposition of carbonaceous solids. Py-GC/MS analysis revealed significant protein derived compounds from all algae including toluene, phenol, 4-methylphenol, 1H-indole, 1H-indole-3methyl. Lipid pyrolysis products derived from C. reinhardtii wild type and C. reinhardtii CW15 were almost identical and reflected the close similarity of the fatty acid profiles of both strains. Major products identified were phytol and phytol derivatives formed from the terpenoid chain of chlorophyll, benzoic acid alkyl ester derivative, benzenedicarboxylic acid alkyl ester derivative and squalene. In addition, octadecanoic acid octyl ester, hexadecanoic acid methyl ester and hydrocarbons including heptadecane, 1-nonadecene and heneicosane were detected from C. vulgaris pyrolysed lipids. These results contrast sharply with the types of pyrolytic products obtained from terrestrial lignocellulosic feedstocks and reveal that intermediate pyrolysis of algal biomass generates a range of useful products with wide ranging applications including bio fuels.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Cassava root is the main staple for 70% of the population in Mozambique, particularly in inaccessible rural areas, but is known to be low in iron. Anaemia is a public health problem in mothers and preschool children in Mozambique and up to 40% of these cases are probably due to dietary iron deficiency. The World Health Organization (WHO) and Food and Agriculture Organization of the United Nations (FAO) recognize the fortification of foodstuff as an effective method to remedy dietary deficiencies of micronutrients, including iron. Cassava mahewu, a non-alcoholic fermented beverage is prepared at subsistence level from cassava roots using indigenous procedures. The aim of the study was to standardize mahewu fermentation and investigate if the type of cassava fermented, or the iron compound used for fortification affected the final product. Roots of sweet and bitter varieties of cassava from four districts (Rapale, Meconta, Alto Molocue and Zavala) in Mozambique, were peeled, dried and pounded to prepare flour. Cassava flour was cooked and fermented under controlled conditions (45°C for 24 h). The fermentation period and temperature were set, based on the findings of a pilot study which showed that an end-point pH of about 4.5 was regularly reached after 24 h at 45°C. Cassava mahewu was fortified with ferrous sulfate (FeSO4.7H2O) or ferrous fumarate (C4H2FeO4) at the beginning (time zero) and at the end of fermentation (24 h). The amount of iron added to the mahewu was based on the average of the approved range of iron used for the fortification of maize meal. The mean pH at the endpoint was 4.5, with 0.29% titratable acidity. The pH and acidity were different to those reported in previous studies on maize mahewu, whereas the solid extract of 9.65% was found to be similar. Lactic acid bacteria (LAB) and yeast growth were not significantly different in mahewu fortified with either of the iron compounds. There was no significant difference between cassava mahewu made from bitter or sweet varieties. A standard method for preparation and iron fortification of cassava mahewu was developed. It is recommended that fortification occurs at the end of fermentation when done at household level.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Cassava contributes significantly to biobased material development. Conventional approaches for its bio-derivative-production and application cause significant wastes, tailored material development challenges, with negative environmental impact and application limitations. Transforming cassava into sustainable value-added resources requires redesigning new approaches. Harnessing unexplored material source, and downstream process innovations can mitigate challenges. The ultimate goal proposed an integrated sustainable process system for cassava biomaterial development and potential application. An improved simultaneous release recovery cyanogenesis (SRRC) methodology, incorporating intact bitter cassava, was developed and standardized. Films were formulated, characterised, their mass transport behaviour, simulating real-distribution-chain conditions quantified, and optimised for desirable properties. Integrated process design system, for sustainable waste-elimination and biomaterial development, was developed. Films and bioderivatives for desired MAP, fast-delivery nutraceutical excipients and antifungal active coating applications were demonstrated. SRRC-processed intact bitter cassava produced significantly higher yield safe bio-derivatives than peeled, guaranteeing 16% waste-elimination. Process standardization transformed entire root into higher yield and clarified colour bio-derivatives and efficient material balance at optimal global desirability. Solvent mass through temperature-humidity-stressed films induced structural changes, and influenced water vapour and oxygen permeability. Sevenunit integrated-process design led to cost-effectiveness, energy-efficient and green cassava processing and biomaterials with zero-environment footprints. Desirable optimised bio-derivatives and films demonstrated application in desirable in-package O2/CO2, mouldgrowth inhibition, faster tablet excipient nutraceutical dissolutions and releases, and thymolencapsulated smooth antifungal coatings. Novel material resources, non-root peeling, zero-waste-elimination, and desirable standardised methodology present promising process integration tools for sustainable cassava biobased system development. Emerging design outcomes have potential applications to mitigate cyanide challenges and provide bio-derivative development pathways. Process system leads to zero-waste, with potential to reshape current style one-way processes into circular designs modelled on nature's effective approaches. Indigenous cassava components as natural material reinforcements, and SRRC processing approach has initiated a process with potential wider deployment in broad product research development. This research contributes to scientific knowledge in material science and engineering process design.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Starches are applied in several fields of industry. Amylose and amylopectin (natural polymers) constitute the starch in vegetable cells. In some processes native starches cannot support high stress conditions (high temperatures/acidity). Then, modification methods are developed aiming the improving of starch technological utilization. Oxidative modification with H2O2 has been the subject of many researches. UV rays as well microwave irradiation can be used. The aim was to confirm possible thermogravimetric alterations in native cassava starch (A) granules due to a double starch modification: 1st step) H2O2 standard solutions 0.1 mol L-1 (B), 0.2 mol L-1 (C) and 0.3 mol L-1 (D) and UV rays exposure for 1h; 2nd step) microwave irradiation for 5 min. The results of thermogravimetric curves (TG-DTA) show that the behaviors of the starch proprieties were modified. Highlighting, the modified samples C and D showed a decrease on the thermal stability step. This alteration turned them suitable to many field of industry like the paper one.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Neglected agricultural products (NAPs) are defined as discarded material in agricultural production. Corn cobs are a major waste of agriculture maize. Here, a methanolic extract from corn cobs (MEC) was obtained. MEC contains phenolic compounds, protein, carbohydrates (1.4:0.001:0.001). We evaluated the in vitro and in vivo antioxidant potential of MEC. Furthermore, its antiproliferative property against tumor cells was assessed through MTT assays and proteins related to apoptosis in tumor cells were examined by western blot. MEC showed no hydroxyl radical scavenger capacity, but it showed antioxidant activity in Total Antioxidant Capacity and DPPH scavenger ability assays. MEC showed higher Reducing Power than ascorbic acid and exhibited high Superoxide Scavenging activity. In tumor cell culture, MEC increased catalase, metallothionein and superoxide dismutase expression in accordance with the antioxidant tests. In vivo antioxidant test, MEC restored SOD and CAT, decreased malondialdehyde activities and showed high Trolox Equivalent Antioxidant Capacity in animals treated with CCl4. Furthermore, MEC decreased HeLa cells viability by apoptosis due an increase of Bax/Bcl-2 ratio, caspase 3 active. Protein kinase C expression increased was also detected in treated tumor cells. Thus, our findings pointed out the biotechnological potential of corn cobs as a source of molecules with pharmacological activity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Balsamic vinegar (BV) is a typical and valuable Italian product, worldwide appreciated thanks to its characteristic flavors and potential health benefits. Several studies have been conducted to assess physicochemical and microbial compositions of BV, as well as its beneficial properties. Due to highly-disseminated claims of antioxidant, antihypertensive and antiglycemic properties, BV is a known target for frauds and adulterations. For that matter, product authentication, certifying its origin (region or country) and thus the processing conditions, is becoming a growing concern. Striving for fraud reduction as well as quality and safety assurance, reliable analytical strategies to rapidly evaluate BV quality are very interesting, also from an economical point of view. This work employs silica plate laser desorption/ionization mass spectrometry (SP-LDI-MS) for fast chemical profiling of commercial BV samples with protected geographical indication (PGI) and identification of its adulterated samples with low-priced vinegars, namely apple, alcohol and red/white wines.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Frankfurters are widely consumed all over the world, and the production requires a wide range of meat and non-meat ingredients. Due to these characteristics, frankfurters are products that can be easily adulterated with lower value meats, and the presence of undeclared species. Adulterations are often still difficult to detect, due the fact that the adulterant components are usually very similar to the authentic product. In this work, FT-Raman spectroscopy was employed as a rapid technique for assessing the quality of frankfurters. Based on information provided by the Raman spectra, a multivariate classification model was developed to identify the frankfurter type. The aim was to study three types of frankfurters (chicken, turkey and mixed meat) according to their Raman spectra, based on the fatty vibrational bands. Classification model was built using partial least square discriminant analysis (PLS-DA) and the performance model was evaluated in terms of sensitivity, specificity, accuracy, efficiency and Matthews's correlation coefficient. The PLS-DA models give sensitivity and specificity values on the test set in the ranges of 88%-100%, showing good performance of the classification models. The work shows the Raman spectroscopy with chemometric tools can be used as an analytical tool in quality control of frankfurters.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nutrients composition, phenolic compounds, antioxidant activity and estimated glycemic index (EGI) were evaluated in sorghum bran (SB) and decorticated sorghum flour (DSF), obtained by a rice-polisher, as well as whole sorghum flour (WSF). Correlation between EGI and the studied parameters were determined. SB presented the highest protein, lipid, ash, β-glucan, total and insoluble dietary fiber contents; and the lowest non-resistant and total starch contents. The highest carbohydrate and resistant starch contents were in DSF and WSF, respectively. Phenolic compounds and antioxidant activities were concentrated in SB. The EGI values were: DSF 84.5±0.41; WSF 77.2±0.33; and SB 60.3±0.78. Phenolic compounds, specific flavonoids and antioxidant activities, as well as total, insoluble and soluble dietary fiber and β-glucans of sorghum flour samples were all negatively correlated to EGI. RS content was not correlated to EGI.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Although Brazil is the third largest fruit producer in the world, several specimens consumed are not well studied from the chemical viewpoint, especially for quantitative analysis. For this reason and the crescent employment of mass spectrometry (MS) techniques in food science we selected twenty-two phenolic compounds with important biological activities and developed an ultra-high performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS) method using electrospray (ESI) in negative ion mode aiming their quantification in largely consumed Brazilian fruits (açaí-do-Amazonas, acerola, cashew apple, camu-camu, pineapple and taperebá). Multiple reaction monitoring (MRM) was applied and the selection of proper product ions for each transition assured high selectivity. Linearity (0.99580%), precision (CV<20%) and extraction recovery rate (>80%) were satisfactory and showed that the method provides an efficient protocol to analyze phenolic compounds in fruit pulp extracts.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Several biotechnological processes can show an undesirable formation of emulsions making difficult phase separation and product recovery. The breakup of oil-in-water emulsions stabilized by yeast was studied using different physical and chemical methods. These emulsions were composed by deionized water, hexadecane and commercial yeast (Saccharomyces cerevisiae). The stability of the emulsions was evaluated varying the yeast concentration from 7.47 to 22.11% (w/w) and the phases obtained after gravity separation were evaluated on chemical composition, droplet size distribution, rheological behavior and optical microscopy. The cream phase showed kinetic stability attributed to mechanisms as electrostatic repulsion between the droplets, a possible Pickering-type stabilization and the viscoelastic properties of the concentrated emulsion. Oil recovery from cream phase was performed using gravity separation, centrifugation, heating and addition of demulsifier agents (alcohols and magnetic nanoparticles). Long centrifugation time and high centrifugal forces (2h/150,000×g) were necessary to obtain a complete oil recovery. The heat treatment (60°C) was not enough to promote a satisfactory oil separation. Addition of alcohols followed by centrifugation enhanced oil recovery: butanol addition allowed almost complete phase separation of the emulsion while ethanol addition resulted in 84% of oil recovery. Implementation of this method, however, would require additional steps for solvent separation. Addition of charged magnetic nanoparticles was effective by interacting electrostatically with the interface, resulting in emulsion destabilization under a magnetic field. This method reached almost 96% of oil recovery and it was potentially advantageous since no additional steps might be necessary for further purifying the recovered oil.