694 resultados para breeding diet
Resumo:
1. Female Wistar rats were given an adequate-zinc (60 μg/g) or low-Zn (7 μg/g) diet for a minimum of 2 weeks and then mated. They were then either continued on the same diets (+Zn –Fe or –Zn –Fe) or given similar diets supplemented with four times the normal level of iron (+Zn + Fe or –Zn + Fe). The day before parturition they were killed and the fetuses removed and analysed. 2. There were no differences in numbers of fetuses or the number of resorption sites. In the absence of Fe supplementation, the mean fetal wet weight was significantly less (P < 0.05) in the low-Zn group but there was no effect of Zn in the two Fe-supplemented groups. The addition of Fe significantly decreased (P < 0.05) the mean fetal wet weight in the adequate-Zn groups but had no effect in the low-Zn groups. There were no differences in fetal dry weight, fat, protein or DNA content. Both Fe-supplemented groups produced fetuses of higher Fe concentration (P < 0.01), and mothers with higher bone Fe-concentration (P < 0.01) compared with the non-supplemented groups. The low-Zn groups produced fetuses of lower Zn concentration (P < 0,001) than the adequate-Zn groups but there was no effect on maternal bone Zn concentration. 3. It was concluded that Fe-supplements did not adversely affect fetal growth from mothers given a low-Zn diet, but the addition of Zn to the unsupplemented diet increased fetal wet weight. These findings were not accompanied by any other differences in fetal composition or dry weight, and do not therefore lend support to the suggestion of an Fe-Zn interaction.
Resumo:
Objective: SNPs identified from genome wide association studies associate with lipid risk markers of cardiovascular disease. This study investigated whether these SNPs altered the plasma lipid response to diet in the ‘RISCK’ study cohort. Methods: Participants (n = 490) from a dietary intervention to lower saturated fat by replacement with carbohydrate or monounsaturated fat, were genotyped for 39 lipid-associated SNPs. The association of each individual SNP, and of the SNPs combined (using genetic predisposition scores), with plasma lipid concentrations was assessed at baseline, and on change in response to 24 weeks on diets. Results: The associations between SNPs and lipid concentrations were directionally consistent with previous findings. The genetic predisposition scores were associated with higher baseline concentrations of plasma total(P = 0.02) and LDL (P = 0.002) cholesterol, triglycerides (P = 0.001) and apolipoprotein B (P = 0.004), and with lower baseline concentrations of HDL cholesterol (P < 0.001) and apolipoprotein A-I (P < 0.001). None of the SNPs showed significant association with the reduction of plasma lipids in response to the dietary interventions and there was no evidence of diet-gene interactions. Conclusion: Results from this exploratory study have shown that increased genetic predisposition was associated with an unfavourable plasma lipid profile at baseline, but did not influence the improvement in lipid profiles by the low-saturated-fat diets.
Resumo:
Weaning is a stressful process for kittens, and is often associated with diarrhoea and the onset of infectious diseases. The gastrointestinal microbiota plays an essential role in host well-being, including improving homeostasis. Composition of the gastrointestinal microbiota of young cats is poorly understood, and the impact of diet on the kitten microbiota unknown. The aims of this study were to monitor the faecal microbiota of kittens and determine the effect(s) of diet on its composition. Bacterial succession was monitored in two groups of kittens (at 4 and 6 weeks, and 4 and 9 months of age) fed different foods. Age-related microbial changes revealed significantly different counts of total bacteria, lactic acid bacteria, Desulfovibrionales, Clostridium cluster IX and Bacteroidetes between 4-week- and 9-month-old kittens. Diet-associated differences in the faecal microbiota of the two feeding groups were evident. In general, fluorescence in situ hybridization analysis demonstrated bifidobacteria, Atopobium group, Clostridium cluster XIV and lactic acid bacteria were dominant in kittens. Denaturing gradient gel electrophoresis profiling showed highly complex and diverse faecal microbiotas for kittens, with age- and/or food-related changes seen in relation to species richness and similarity indices. Four-week-old kittens harboured more diverse and variable profiles than those of weaned kittens.
Resumo:
The inequality of nutrition and obesity re-focuses concern on who in society is consuming the worst diet. Identification of individuals with the worst of dietary habits permits for targeting interventions to assuage obesity among the population segment where it is most prevalent. We argue that the use of fiscal interventions does not appropriately take into account the economic, social and health circumstances of the intended beneficiaries of the policy. This paper reviews the influence of socio-demographic factors on nutrition and health status and considers the impacts of nutrition policy across the population drawing on methodologies from both public health and welfare economics. The effects of a fat tax on diet are found to be small and while other studies show that fat taxes saves lives, we show that average levels of disease risk do not change much: those consuming particularly bad diets continue to do so. Our results also suggest that the regressivity of the policy increases as the tax becomes focused on products with high saturated fat contents. A fiscally neutral policy that combines the fat tax with a subsidy on fruit and vegetables is actually more regressive because consumption of these foods tends to be concentrated in socially undeserving households. We argue that when inequality is of concern, population-based measures must reflect this and approaches that target vulnerable populations which have a shared propensity to adopt unhealthy behaviours are appropriate.
Resumo:
Background: Poor diet quality is a major public health concern that has prompted governments to introduce a range of measures to promote healthy eating. For these measures to be effective, they should target segments of the population with messages relevant to their needs, aspirations and circumstances. The present study investigates the extent to which attitudes and constraints influence healthy eating, as well as how these vary by demographic characteristics of the UK population. It further considers how such information may be used in segmented diet and health policy messages. Methods: A survey of 250 UK adults elicited information on conformity to dietary guidelines, attitudes towards healthy eating, constraints to healthy eating and demographic characteristics. Ordered logit regressions were estimated to determine the importance of attitudes and constraints in determining how closely respondents follow healthy eating guidelines. Further regressions explored the demographic characteristics associated with the attitudinal and constraint variables. Results: People who attach high importance to their own health and appearance eat more healthily than those who do not. Risk-averse people and those able to resist temptation also eat more healthily. Shortage of time is considered an important barrier to healthy eating, although the cost of a healthy diet is not. These variables are associated with a number of demographic characteristics of the population; for example, young adults are more motivated to eat healthily by concerns over their appearance than their health. Conclusions: The approach employed in the present study could be used to inform future healthy eating campaigns. For example, messages to encourage the young to eat more healthily could focus on the impact of diets on their appearance rather than health.
Resumo:
There is growing evidence of changes in the timing of important ecological events, such as flowering in plants and reproduction in animals, in response to climate change, with implications for population decline and biodiversity loss. Recent work has shown that the timing of breeding in wild birds is changing in response to climate change partly because individuals are remarkably flexible in their timing of breeding. Despite this work, our understanding of these processes in wild populations remains very limited and biased towards species from temperate regions. Here, we report the response to changing climate in a tropical wild bird population using a long-term dataset on a formerly critically endangered island endemic, the Mauritius kestrel. We show that the frequency of spring rainfall affects the timing of breeding, with birds breeding later in wetter springs. Delays in breeding have consequences in terms of reduced reproductive success as birds get exposed to risks associated with adverse climatic conditions later on in the breeding season, which reduce nesting success. These results, combined with the fact that frequency of spring rainfall has increased by about 60 per cent in our study area since 1962, imply that climate change is exposing birds to the stochastic risks of late reproduction by causing them to start breeding relatively late in the season.