686 resultados para blend


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Blends of PET with the different commercial co(ter)polymer compatibilisers were prepared and the effect of their glycidyl methacrylate (GMA) content and viscosity on the blend properties was determined. The efficiency of compatibilisation of the commercial co(ter)polymer in the ternary blends was examined and compared. For all the ternary blends (PET/EPR/co(ter)polymer, the PET content was fixed at 70 wt% of the total weight of the blends. Higher compatibilisation effect was found in PET/EPR blends compatibilised with the commercial copolymer ethylene glycidyl methacrylate (E-GMA8(5)) containing 8% GMA and MFI = 5 (g/10min) was achieved as reflected in the observed higher elongation at break when compared to corresponding blends compatibilised with the methyl acrylate containing terpolymer ethylene methyl acrylate glycidyl methacrylate EM-GMA8(6) containing 8% GMA and MFI = 6 (g/10min). The presence of methyl acrylate ester groups in the commercial terpolymer EM-GMA (containing similar amount of GMA and same MFI) resulted in low level of compatibilisation due to the possibility of a higher extent of branching and crosslinking resulting from the presence of the ester groups and this would be responsible for the observed lower elongation, and the less favourable morphology observed. Further, the more bulky structure of the terpolymer compared to the copolymer would give rise to a more difficult migration to the interface, thus lowering the efficiency of compatibilisation. However, the morphology of both blends compatibilised with either the terpolymer or the copolymer were not significantly different.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Presently monoethanolamine (MEA) remains the industrial standard solvent for CO2 capture processes. Operating issues relating to corrosion and degradation of MEA at high temperatures and concentrations, and in the presence of oxygen, in a traditional PCC process, have introduced the requisite for higher quality and costly stainless steels in the construction of capture equipment and the use of oxygen scavengers and corrosion inhibitors. While capture processes employing MEA have improved significantly in recent times there is a continued attraction towards alternative solvents systems which offer even more improvements. This movement includes aqueous amine blends which are gaining momentum as new generation solvents for CO2 capture processes. Given the exhaustive array of amines available to date endless opportunities exist to tune and tailor a solvent to deliver specific performance and physical properties in line with a desired capture process. The current work is focussed on the rationalisation of CO2 absorption behaviour in a series of aqueous amine blends incorporating monoethanolamine, N,N-dimethylethanolamine (DMEA), N,N-diethylethanolamine (DEEA) and 2-amino-2-methyl-1-propanol (AMP) as solvent components. Mass transfer/kinetic measurements have been performed using a wetted wall column (WWC) contactor at 40°C for a series of blends in which the blend properties including amine concentration, blend ratio, and CO2 loadings from 0.0-0.4 (moles CO2/total moles amine) were systematically varied and assessed. Equilibrium CO2 solubility in each of the blends has been estimated using a software tool developed in Matlab for the prediction of vapour liquid equilibrium using a combination of the known chemical equilibrium reactions and constants for the individual amine components which have been combined into a blend.From the CO2 mass transfer data the largest absorption rates were observed in blends containing 3M MEA/3M Am2 while the selection of the Am2 component had only a marginal impact on mass transfer rates. Overall, CO2 mass transfer in the fastest blends containing 3M MEA/3M Am2 was found to be only slightly lower than a 5M MEA solution at similar temperatures and CO2 loadings. In terms of equilibrium behaviour a slight decrease in the absorption capacity (moles CO2/mole amine) with increasing Am2 concentration in the blends with MEA was observed while cyclic capacity followed the opposite trend. Significant increases in cyclic capacity (26-111%) were observed in all blends when compared to MEA solutions at similar temperatures and total amine concentrations. In view of the reasonable compromise between CO2 absorption rate and capacity a blend containing 3M MEA and 3M AMP as blend components would represent a reasonable alternative in replacement of 5M MEA as a standalone solvent.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose. The goal of this study is to improve the favorable molecular interactions between starch and PPC by addition of grafting monomers MA and ROM as compatibilizers, which would advance the mechanical properties of starch/PPC composites. ^ Methodology. DFT and semi-empirical methods based calculations were performed on three systems: (a) starch/PPC, (b) starch/PPC-MA, and (c) starch-ROM/PPC. Theoretical computations involved the determination of optimal geometries, binding-energies and vibrational frequencies of the blended polymers. ^ Findings. Calculations performed on five starch/PPC composites revealed hydrogen bond formation as the driving force behind stable composite formation, also confirmed by the negative relative energies of the composites indicating the existence of binding forces between the constituent co-polymers. The interaction between starch and PPC is also confirmed by the computed decrease in stretching CO and OH group frequencies participating in hydrogen bond formation, which agree qualitatively with the experimental values. ^ A three-step mechanism of grafting MA on PPC was proposed to improve the compatibility of PPC with starch. Nine types of 'blends' produced by covalent bond formation between starch and MA-grafted PPC were found to be energetically stable, with blends involving MA grafted at the 'B' and 'C' positions of PPC indicating a binding-energy increase of 6.8 and 6.2 kcal/mol, respectively, as compared to the non-grafted starch/PPC composites. A similar increase in binding-energies was also observed for three types of 'composites' formed by hydrogen bond formation between starch and MA-grafted PPC. ^ Next, grafting of ROM on starch and subsequent blend formation with PPC was studied. All four types of blends formed by the reaction of ROM-grafted starch with PPC were found to be more energetically stable as compared to the starch/PPC composite and starch/PPC-MA composites and blends. A blend of PPC and ROM grafted at the ' a&d12; ' position on amylose exhibited a maximal increase of 17.1 kcal/mol as compared with the starch/PPC-MA blend. ^ Conclusions. ROM was found to be a more effective compatibilizer in improving the favorable interactions between starch and PPC as compared to MA. The ' a&d12; ' position was found to be the most favorable attachment point of ROM to amylose for stable blend formation with PPC.^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

THE SAINTS OF BANIAS is a novel set in a fictional slavetown during the Reconstruction Era. The work seeks to blend myth, magic, and history to create a world that is both believable and otherworldly. The novel follows Beah, an ex-slave girl travelling to the town of Banias in hopes of finding her mother; Prophet Moon, an itinerant vision-seer who offers to help Beah with her goal; and the founder of the town, Claude Banias, who struggles to protect Banias from bloodthirsty radicals. As the characters’ lives intertwine, they face more challenges and secrets. THE SAINTS OF BANIAS is loosely based on the biblical story of David and Bathsheba, with Claude acting as David, Beah as Bathsheba, and Prophet Moon as a hybrid of Nathan and Uriah. The novel primarily explores destructive love, the value of hope, and the price of preserving a culture.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Brazil is a country in development, rich in natural resources. In order to grow sustainably, it is necessary to Brazil to preserve its environment, which is an expressive challenge, especially to industries, such as those producing ceramic materials. This study was developed using Porcelain Tile Polishing Residue (RPP) in blends with soil to build compacted fills. This residue is a slurry generated during the polishing process of porcelain tiles and contains powdery material from the polished tile, the abrasives used during the process and cooling water. The RPP was collected from a private company located in Conde/PB and it was mixed with a sandy-clayey soil, to build the fills. Laboratorial tests were conducted with pure soil, pure RPP and blends in proportions of 5%, 10%, 15% and 20% of RPP in addition to the dry mass of pure soil. The Chemical and Physical Characterization tests performed were: specific solid weight, grain size distribution, laser analysis of grain size distribution, Atterberg limits, X ray fluorescence, X ray diffraction, scanning electron microscopy and soil compaction,. The materials and blends were also compacted and direct shear tests and plate load tests were performed. Plate load tests were conducted using a circular plate with 30 cm diameter, on specimens of pure soil and 5% blend, compacted in a metallic box inside the Soil Mechanics Laboratory of the Federal University of Rio Grande do Norte, Brazil. Both mechanical tests performed were conducted under inundated conditions, willing to reduce the influence of soil suction. An evaluation of the results of the tests performed shows that RPP is a fine material, with grain size distribution smaller than 0,015mm, composed mainly of silica and alumina, and particles in angular shape. The soil was characterized as a clayey sand, geologically known as a lateritic soil, with high percentages of alumina and iron oxide, and particles with rounded shape. Both the Soil and the blends presented low plasticity, while the residue showed a medium plasticity. Direct shear tests showed that the addition of RPP did not cause major changes into blends’ friction angle data, however, it was possible to note that, for the proportions studied, that is a tendency of obtain lower shear stresses for higher percentages of RPP in the blends. Both pure soil and 5% mixture showed a punching disruption for the Plate load test. For this same test, the allowable stress for 5% mixture was 44% higher than the pure soil, and smaller vertical settlement results for all stresses.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Brazil is a country in development, rich in natural resources. In order to grow sustainably, it is necessary to Brazil to preserve its environment, which is an expressive challenge, especially to industries, such as those producing ceramic materials. This study was developed using Porcelain Tile Polishing Residue (RPP) in blends with soil to build compacted fills. This residue is a slurry generated during the polishing process of porcelain tiles and contains powdery material from the polished tile, the abrasives used during the process and cooling water. The RPP was collected from a private company located in Conde/PB and it was mixed with a sandy-clayey soil, to build the fills. Laboratorial tests were conducted with pure soil, pure RPP and blends in proportions of 5%, 10%, 15% and 20% of RPP in addition to the dry mass of pure soil. The Chemical and Physical Characterization tests performed were: specific solid weight, grain size distribution, laser analysis of grain size distribution, Atterberg limits, X ray fluorescence, X ray diffraction, scanning electron microscopy and soil compaction,. The materials and blends were also compacted and direct shear tests and plate load tests were performed. Plate load tests were conducted using a circular plate with 30 cm diameter, on specimens of pure soil and 5% blend, compacted in a metallic box inside the Soil Mechanics Laboratory of the Federal University of Rio Grande do Norte, Brazil. Both mechanical tests performed were conducted under inundated conditions, willing to reduce the influence of soil suction. An evaluation of the results of the tests performed shows that RPP is a fine material, with grain size distribution smaller than 0,015mm, composed mainly of silica and alumina, and particles in angular shape. The soil was characterized as a clayey sand, geologically known as a lateritic soil, with high percentages of alumina and iron oxide, and particles with rounded shape. Both the Soil and the blends presented low plasticity, while the residue showed a medium plasticity. Direct shear tests showed that the addition of RPP did not cause major changes into blends’ friction angle data, however, it was possible to note that, for the proportions studied, that is a tendency of obtain lower shear stresses for higher percentages of RPP in the blends. Both pure soil and 5% mixture showed a punching disruption for the Plate load test. For this same test, the allowable stress for 5% mixture was 44% higher than the pure soil, and smaller vertical settlement results for all stresses.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The thesis presents the results of research that addresses the performance of selective horizontal partitioning to promote Fire Safety in Buildings - FSB. Horizontal partitioning is a passive protection measure, settable in the early stages of the design process and controlled by the architect. However, there is a frequent reconfiguration of the rooms in academic buildings to adjust them for the space demand. Thus, large classrooms could turn into two or more smaller rooms, for example. Regardless when the subdivision occurs in the design phase or during the occupation of the building, the regulations just ensures the compartimentation of the room if all fireguard devices are present in the room. Knowing the fire's first minutes are the most important for life protection, we defend the hypothesis that a kind of partitioning ignored by regulatory standards is able to favoring the building vacancy and occupants rescue, for promote the room’s smoke exhaust. The performance of the selective horizontal partitioning due different blend of openings for smoke outlet was simulated on CFD software. The results indicate that selective horizontal partitioning is able to promote an upper smoke free layer and delay the indoor temperature growth.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The thesis presents the results of research that addresses the performance of selective horizontal partitioning to promote Fire Safety in Buildings - FSB. Horizontal partitioning is a passive protection measure, settable in the early stages of the design process and controlled by the architect. However, there is a frequent reconfiguration of the rooms in academic buildings to adjust them for the space demand. Thus, large classrooms could turn into two or more smaller rooms, for example. Regardless when the subdivision occurs in the design phase or during the occupation of the building, the regulations just ensures the compartimentation of the room if all fireguard devices are present in the room. Knowing the fire's first minutes are the most important for life protection, we defend the hypothesis that a kind of partitioning ignored by regulatory standards is able to favoring the building vacancy and occupants rescue, for promote the room’s smoke exhaust. The performance of the selective horizontal partitioning due different blend of openings for smoke outlet was simulated on CFD software. The results indicate that selective horizontal partitioning is able to promote an upper smoke free layer and delay the indoor temperature growth.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

My thesis is an ethnographic study of how offshore workers of Newfoundland and Labrador, as well as their families, express and reflect upon traditional Newfoundland constructs of fatherhood and masculinity through narrative and ritual. With a schedule that often involves a constant shift between home and away, offshore workers in the province take part in high-risk professions in order to provide for their families back home. These professions, and their associated lifestyles, involve the incorporation of routine strategies that allows family culture to maintain itself. At the same time, these professions largely carry on a tradition of hegemonically masculine practices, albeit in a newer context. Drawing on a blend of literary and ethnographic research based on the Avalon Peninsula, I utilize examples of current Newfoundland culture to describe how nostalgic memoirs of outport Newfoundland create models of hegemonically masculine fatherhood in the province. I go on to explain how those models manifest themselves in the experiences of current offshore workers, and how they affect their spouses and children. Furthermore, through examining how young adults with offshore-working parents describe their experiences of their fathers, it is possible to see how the effects of local hegemonic masculinities are manifested through narratives about fathers who worked away from home.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The majority of electrode materials in batteries and related electrochemical energy storage devices are fashioned into slurries via the addition of a conductive additive and a binder. However, aggregation of smaller diameter nanoparticles in current generation electrode compositions can result in non-homogeneous active materials. Inconsistent slurry formulation may lead to inconsistent electrical conductivity throughout the material, local variations in electrochemical response, and the overall cell performance. Here we demonstrate the hydrothermal preparation of Ag nanoparticle (NP) decorated α-AgVO3 nanowires (NWs) and their conversion to tunnel structured β-AgVO3 NWs by annealing to form a uniform blend of intercalation materials that are well connected electrically. The synthesis of nanostructures with chemically bound conductive nanoparticles is an elegant means to overcome the intrinsic issues associated with electrode slurry production, as wire-to-wire conductive pathways are formed within the overall electrode active mass of NWs. The conversion from α-AgVO3 to β-AgVO3 is explained in detail through a comprehensive structural characterization. Meticulous EELS analysis of β-AgVO3 NWs offers insight into the true β-AgVO3 structure and how the annealing process facilitates a higher surface coverage of Ag NPs directly from ionic Ag content within the α-AgVO3 NWs. Variations in vanadium oxidation state across the surface of the nanowires indicate that the β-AgVO3 NWs have a core–shell oxidation state structure, and that the vanadium oxidation state under the Ag NP confirms a chemically bound NP from reduction of diffused ionic silver from the α-AgVO3 NWs core material. Electrochemical comparison of α-AgVO3 and β-AgVO3 NWs confirms that β-AgVO3 offers improved electrochemical performance. An ex situ structural characterization of β-AgVO3 NWs after the first galvanostatic discharge and charge offers new insight into the Li+ reaction mechanism for β-AgVO3. Ag+ between the van der Waals layers of the vanadium oxide is reduced during discharge and deposited as metallic Ag, the vacant sites are then occupied by Li+.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Microneedles (MNs) are emerging devices that can be used for the delivery of drugs at specific locations1. Their performance is primarily judged by different features and the penetration through tissue is one of the most important aspects to evaluate. For detailed studies of MN performance different kind of in-vitro, exvivo and in-vivo tests should be performed. The main limitation of some of these tests is that biological tissue is too heterogeneous, unstable and difficult to obtain. In addition the use of biological materials sometimes present legal issues. There are many studies dealing with artificial membranes for drug diffusion2, but studies of artificial membranes for Microneedle mechanical characterization are scarce3. In order to overcome these limitations we have developed tests using synthetic polymeric membranes instead of biological tissue. The selected artificial membrane is homogeneous, stable, and readily available. This material is mainly composed of a roughly equal blend of a hydrocarbon wax and a polyolefin and it is commercially available under the brand name Parafilm®. The insertion of different kind of MN arrays prepared from crosslinked polymers were performed using this membrane and correlated with the insertion of the MN arrays in ex-vivo neonatal porcine skin. The insertion depth of the MNs was evaluated using Optical coherence tomography (OCT). The implementation of MN transdermal patches in the market can be improved by make this product user-friendly and easy to use. Therefore, manual insertion is preferred to other kind of procedures. Consequently, the insertion studies were performed in neonatal porcine skin and the artificial membrane using a manual insertion force applied by human volunteers. The insertion studies using manual forces correlated very well with the same studies performed with a Texture Analyzer equipment. These synthetic membranes seem to mimic closely the mechanical properties of the skin for the insertion of MNs using different methods of insertion. In conclusion, this artificial membrane substrate offers a valid alternative to biological tissue for the testing of MN insertion and can be a good candidate for developing a reliable quality control MN insertion test.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Abstract The development of high voltage electrolytes is one of the key aspects for increasing both energy and power density of electrochemical double layer capacitors (EDLCs). The usage of blends of ionic liquids and organic solvents has been considered as a feasible strategy since these electrolytes combine high usable voltages and good transport properties at the same time. In this work, the ionic liquid 1-butyl-1-methylpyrrolidinium bis{(trifluoromethyl)sulfonyl}imide ([Pyrr14][TFSI]) was mixed with two nitrile-based organic solvents, namely butyronitrile and adiponitrile, and the resulting blends were investigated regarding their usage in electrochemical double layer capacitors. Both blends have a high electrochemical stability, which was confirmed by prolonged float tests at 3.2 V, as well as, good transport properties. In fact, the butyronitrile blend reaches a conductivity of 17.14 mS·cm−1 and a viscosity of 2.46 mPa·s at 20 °C, which is better than the state-of-the-art electrolyte (1 mol·dm−3 of tetraethylammonium tetrafluoroborate in propylene carbonate).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

L’ingegneria tissutale rappresenta oggi una delle tematiche più importanti di ricerca in ambito medico-ingegneristico. Questa disciplina si pone come obiettivo di far fronte alla mancanza, sostituzione o riparazione di tessuto attraverso lo sviluppo di scaffolds opportunamente ottimizzati. I polimeri naturali rappresentano una classe di materiali particolarmente indicata per soddisfare i requisiti richiesti soprattutto per la biocompatibilità che spesso li caratterizza. La gelatina è uno dei materiali che si presta alla realizzazione di scaffolds innovativi ad altissima biocompatibilità nonostante le scarse proprietà meccaniche e la facilità di degradazione. Proprio per questo è possibile migliorarne le prestazioni attraverso l’ottimizzazione di processi di blending con altri polimeri, in questo caso le nanofibre di cellulosa e l’impiego di agenti reticolanti. Lo scopo di questo lavoro di tesi, svolto presso l’Istituto di Scienza e Tecnologia dei Materiali Ceramici (ISTEC-CNR) di Faenza, è la progettazione, lo sviluppo e la caratterizzazione di scaffolds polimerici porosi a base di gelatina e nanocellulosa opportunamente reticolati per un ampio range di applicazioni nell’ambito dell’ingegneria tissutale. A questo scopo, sono stati sviluppati cinque dispositivi 3D porosi, ottenuti tramite liofilizzazione, che differiscono per il tipo di processo reticolante applicato. Il progetto ha previsto una prima fase di ricerca bibliografica che ha permesso di conoscere lo stato dell’arte sull’argomento trattato. Si è potuto così procedere alla realizzazione degli scaffolds e a una prima caratterizzazione di carattere chimico-fisico e morfologico. A questo punto, sulla base dei dati ottenuti, sono stati scelti i campioni su cui effettuare ulteriori caratterizzazioni meccaniche. In ultimo, sono stati analizzati e rielaborati tutti i risultati.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Block copolymers of poly(lactide) and poly(carbonate) were synthetized in three different compositions and characterized by 1H-NMR and ATR analyses. The compatibilization effect of this copolymers on 80/20 (w/w%) PLA/PCL blend was evaluated. SEM micrographs show that all the blends exhibit the typical sea-island morphology characteristic of immiscible blends with PCL finely dispersed in droplets on a PLA matrix. Upon the addiction of the copolymers a reduction on PCL droplets size is observable. At the same time, a Tg depression of the PLA phase is detected when the copolymers are added in the blend. These results indicate that these copolymers are effective as compatibilizers. The copolymer that acts as the best compatibilizer is the one characterized by the same amount of PLA and PC as repeating units. As result, in the blend containing this copolymer PLA phase exhibits the highest spherulitic growth rate. An analyses on PLA phase crystallization behaviour from the glassy state within the blends was evaluated by DSC experiments. Isothermal cold crystallization of the PLA phase is enhanced up an order of magnitude upon the blending with PCL. Annealing experiments demonstrated that the crystallization of the PCL phase induces the formation of active nuclei in PLA when cooled above cooled below Tg. When the crystallization rate of PCL is retarded, a reduction on PLA nucleation is observed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Résumé: Le développement de l’industrie des polymères fourni de plus en plus de choix pour la formulation de matériaux pour les couvre-planchers. Les caoutchoucs, le PVC et le linoleum sont les polymères habituellement utilisés dans l’industrie des couvre-planchers. Ce projet répond à un problème de facilité de nettoyage des couvre-planchers de caoutchouc qui sont reconnus pour être mous, collants et ayant une surface rugueuse. L’INTRODUCTION couvrira l’état actuel de la recherche sur les couvre-planchers, surtout en regard au problème de la «nettoyabilité». La théorie pertinente et les informations générales sur les polymères, les composites polymériques et la science des surfaces seront introduites au CHAPITRE 1. Ensuite, le CHAPITRE 2 couvrira la méthode utilisée pour déterminer la nettoyabilité, l’évaluation des résultats ainsi que l’équipement utilise. Le CHAPITRE 3, discutera des premières expériences sur l’effet de la mouillabilité, la rugosité et la dureté sur la facilité de nettoyage des polymères purs. Plusieurs polymères ayant des surfaces plus ou moins hydrophobes seront investigués afin d’observer leur effet sur la nettoyabilité. L’effet de la rugosité sur la nettoyabilité sera investigué en imprimant une rugosité définie lors du moulage des échantillons; l’influence de la dureté sera également étudiée. Ensuite, un modèle de salissage/nettoyage sera établi à partir de nos résultats et observations afin de rationaliser les facteurs, ou « règles », qui détrminent la facilité de nettoyage des surfaces. Finalement, la réticulation au peroxyde sera étudiée comme une méthode de modification des polymères dans le but d’améliorer leur nettoyabilité; un mécanisme découlant des résultats de ces études sera présenté. Le CHAPITRE 4 étendra cette recherche aux mélanges de polymères; ces derniers servent habituellement à optimiser la performance des polymères purs. Dans ce chapitre, les mêmes tests discutés dans le CHAPITRE 3 seront utilisés pour vérifier le modèle de nettoyabilité établi ci-haut. De plus, l’influence de la non-miscibilité des mélanges de polymères sera discutée du point de vue de la thermodynamique (DSC) et de la morphologie (MEB). L’utilisation de la réticulation par peroxyde sera étudié dans les mélanges EPDM/ (E-ran-MAA(Zn)-ran-BuMA) afin d’améliorer la compatibilité de ces polymères. Les effets du dosage en agent de réticulation et du temps de cuisson seront également examinés. Finalement, un compatibilisant pré-réticulé a été développé pour les mélanges ternaires EPDM/ (E-ran-MAA(Zn)-ran-BuMA)/ HSR; son effet sur la nettoyabilité et sur la morphologie du mélange sera exposé.