653 resultados para bioscience


Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Repair of tissue after injury depends on a series of concerted but overlapping events including, inflammation, re-epithelialization, neovascularization and synthesis and stabilization of a fibrous extracellular matrix (ECM) that is remodeled to emulate normal tissue over time. Particular members of the transglutaminase (TG) family are upregulated during wound healing and act as a novel class of wound-healing mediators during the repair process. This group of enzymes which crosslink proteins via epsilon(gamma-glutamyl) lysine bridges are involved in wound healing through their ability to stabilize proteins and also by regulating the behavior of a wide variety of cell types that are recruited to the damaged area in order to carry out tissue repair. In this article we discuss the function of the most widely expressed member of the TG family "tissue transglutaminase" (TG2) in wound repair. Using both early and recent evidence from the literature we demonstrate how the multifunctional TG2 affects the stability of the ECM, cell-ECM interactions and as a consequence cell behavior within the different phases of wound healing, and highlight how TG2 itself might be exploited for therapeutic use.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Patients with cancer often undergo a specific loss of skeletal muscle mass, while the visceral protein reserves are preserved. This condition known as cachexia reduces the quality of life and eventually results in death through erosion of the respiratory muscles. Nutritional supplementation or appetite stimulants are unable to restore the loss of lean body mass, since protein catabolism is increased mainly as a result of the activation of the ATP-ubiquitin-dependent proteolytic pathway. Several mediators have been proposed. An enhanced protein degradation is seen in skeletal muscle of mice administered tumour necrosis factor (TNF), which appears to be mediated by oxidative stress. There is some evidence that this may be a direct effect and is associated with an increase in total cellular-ubiquitin-conjugated muscle proteins. Another cytokine, interleukin-6 (IL-6), may play a role in muscle wasting in certain animal tumours, possibly through both lysosomal (cathepsin) and non-lysosomal (proteasome) pathways. A tumour product, proteolysis-inducing factor (PIF) is produced by cachexia-inducing murine and human tumours and initiates muscle protein degradation directly through activation of the proteasome pathway. The action of PIF is blocked by eicosapentaenoic acid (EPA), which has been shown to attenuate the development of cachexia in pancreatic cancer patients. When combined with nutritional supplementation EPA leads to accumulation of lean body mass and prolongs survival. Further knowledge on the biochemical mechanisms of muscle protein catabolism will aid the development of effective therapy for cachexia.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The G-protein coupled receptors--or GPCRs--comprise simultaneously one of the largest and one of the most multi-functional protein families known to modern-day molecular bioscience. From a drug discovery and pharmaceutical industry perspective, the GPCRs constitute one of the most commercially and economically important groups of proteins known. The GPCRs undertake numerous vital metabolic functions and interact with a hugely diverse range of small and large ligands. Many different methodologies have been developed to efficiently and accurately classify the GPCRs. These range from motif-based techniques to machine learning as well as a variety of alignment-free techniques based on the physiochemical properties of sequences. We review here the available methodologies for the classification of GPCRs. Part of this work focuses on how we have tried to build the intrinsically hierarchical nature of sequence relations, implicit within the family, into an adaptive approach to classification. Importantly, we also allude to some of the key innate problems in developing an effective approach to classifying the GPCRs: the lack of sequence similarity between the six classes that comprise the GPCR family and the low sequence similarity to other family members evinced by many newly revealed members of the family.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Understanding the structures and functions of membrane proteins is an active area of research within bioscience. Membrane proteins are key players in essential cellular processes such as the uptake of nutrients, the export of waste products, and the way in which cells communicate with their environment. It is therefore not surprising that membrane proteins are targeted by over half of all prescription drugs. Since most membrane proteins are not abundant in their native membranes, it is necessary to produce them in recombinant host cells to enable further structural and functional studies. Unfortunately, achieving the required yields of functional recombinant membrane proteins is still a bottleneck in contemporary bioscience. This has highlighted the need for defined and rational optimization strategies based upon experimental observation rather than relying on trial and error. We have published a transcriptome and subsequent genetic analysis that has identified genes implicated in high-yielding yeast cells. These results have highlighted a role for alterations to a cell's protein synthetic capacity in the production of high yields of recombinant membrane protein: paradoxically, reduced protein synthesis favors higher yields. These results highlight a potential bottleneck at the protein folding or translocation stage of protein production.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The slow down in the drug discovery pipeline is, in part, owing to a lack of structural and functional information available for new drug targets. Membrane proteins, the targets of well over 50% of marketed pharmaceuticals, present a particular challenge. As they are not naturally abundant, they must be produced recombinantly for the structural biology that is a prerequisite to structure-based drug design. Unfortunately, however, obtaining high yields of functional, recombinant membrane proteins remains a major bottleneck in contemporary bioscience. While repeated rounds of trial-and-error optimization have not (and cannot) reveal mechanistic details of the biology of recombinant protein production, examination of the host response has provided new insights. To this end, we published an early transcriptome analysis that identified genes implicated in high-yielding yeast cell factories, which has enabled the engineering of improved production strains. These advances offer hope that the bottleneck of membrane protein production can be relieved rationally.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In order to metastasize away from the primary tumor site and migrate into adjacent tissues, cancer cells will stimulate cellular motility through the regulation of their cytoskeletal structures. Through the coordinated polymerization of actin filaments, these cells will control the geometry of distinct structures, namely lamella, lamellipodia and filopodia, as well as the more recently characterized invadopodia. Because actin binding proteins play fundamental functions in regulating the dynamics of actin polymerization, they have been at the forefront of cancer research. This review focuses on a subset of actin binding proteins involved in the regulation of these cellular structures and protrusions, and presents some general principles summarizing how these proteins may remodel the structure of actin. The main body of this review aims to provide new insights into how the expression of these actin binding proteins is regulated during carcinogenesis and highlights new mechanisms that may be initiated by the metastatic cells to induce aberrant expression of such proteins. © 2013 Landes Bioscience.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dipeptidyl peptidase IV (DPP IV) is a widely distributed physiological enzyme that can be found solubilized in blood, or membrane-anchored in tissues. DPP IV and related dipeptidase enzymes cleave a wide range of physiological peptides and have been associated with several disease processes including Crohn's disease, chronic liver disease, osteoporosis, multiple sclerosis, eating disorders, rheumatoid arthritis, cancer, and of direct relevance to this review, type 2 diabetes. Here, we place particular emphasis on two peptide substrates of DPP IV with insulin-releasing and antidiabetic actions namely, glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP). The rationale for inhibiting DPP IV activity in type 2 diabetes is that it decreases peptide cleavage and thereby enhances endogenous incretin hormone activity. A multitude of novel DPP IV inhibitor compounds have now been developed and tested. Here we examine the information available on DPP IV and related enzymes, review recent preclinical and clinical data for DPP IV inhibitors, and assess their clinical significance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Porous 3D polymer scaffolds prepared by TIPS from PLGA (53:47) and PS are intrinsically hydrophobic which prohibits the wetting of such porous media by water. This limits the application of these materials for the fabrication of scaffolds as supports for cell adhesion/spreading. Here we demonstrate that the interior surfaces of polymer scaffolds can be effectively modified using atmospheric air plasma (AP). Polymer films (2D) were also modified as control. The surface properties of wet 2D and 3D scaffolds were characterised using zeta-potential and wettability measurements. These techniques were used as the primary screening methods to assess surface chemistry and the wettability of wet polymer constructs prior and after the surface treatment. The surfaces of the original polymers are rather hydrophobic as highlighted but contain acidic functional groups. Increased exposure to AP improved the water wetting of the treated surfaces because of the formation of a variety of oxygen and nitrogen containing functions. The morphology and pore structure was assessed using SEM and a liquid displacement test. The PLGA and PS foam samples have central regions which are open porous interconnected networks with maximum pore diameters of 49 μm for PLGA and 73 μm for PS foams. (Figure Presented) © 2007 Wiley-VCH Verlag GmbH & Co. KGaA.