928 resultados para automation of fit analysis
Resumo:
Taking intraoperative frozen sections (FS) is a widely used procedure in oncologic surgery. However so far no evidence of an association of FS analysis and premalignant changes in the surgical margin exists. Therefore, the aim of this study was to evaluate the impact of FS on different categories of the final margins of squamous cell carcinoma (SCC) of the oral cavity and lips.
Resumo:
At the research reactor Forschungs-Neutronenquelle Heinz Maier-Leibnitz (FRM II) a new Prompt Gamma-ray Activation Analysis (PGAA) facility was installed. The instrument was originally built and operating at the spallation source at the Paul Scherrer Institute in Switzerland. After a careful re-design in 2004–2006, the new PGAA instrument was ready for operation at FRM II. In this paper the main characteristics and the current operation conditions of the facility are described. The neutron flux at the sample position can reach up 6.07×1010 [cm−2 s−1], thus the optimisation of some parameters, e.g. the beam background, was necessary in order to achieve a satisfactory analytical sensitivity for routine measurements. Once the optimal conditions were reached, detection limits and sensitivities for some elements, like for example H, B, C, Si, or Pb, were calculated and compared with other PGAA facilities. A standard reference material was also measured in order to show the reliability of the analysis under different conditions at this instrument.
Resumo:
Telomeres have emerged as crucial cellular elements in aging and various diseases including cancer. To measure the average length of telomere repeats in cells, we describe our protocols that use fluorescent in situ hybridization (FISH) with labeled peptide nucleic acid (PNA) probes specific for telomere repeats in combination with fluorescence measurements by flow cytometry (flow FISH). Flow FISH analysis can be performed using commercially available flow cytometers, and has the unique advantage over other methods for measuring telomere length of providing multi-parameter information on the length of telomere repeats in thousands of individual cells. The accuracy and reproducibility of the measurements is augmented by the automation of most pipetting (aspiration and dispensing) steps, and by including an internal standard (control cells) with a known telomere length in every tube. The basic protocol for the analysis of nucleated blood cells from 22 different individuals takes about 12 h spread over 2-3 days.
Resumo:
The Receiver Operating Characteristic (ROC) curve is a prominent tool for characterizing the accuracy of continuous diagnostic test. To account for factors that might invluence the test accuracy, various ROC regression methods have been proposed. However, as in any regression analysis, when the assumed models do not fit the data well, these methods may render invalid and misleading results. To date practical model checking techniques suitable for validating existing ROC regression models are not yet available. In this paper, we develop cumulative residual based procedures to graphically and numerically assess the goodness-of-fit for some commonly used ROC regression models, and show how specific components of these models can be examined within this framework. We derive asymptotic null distributions for the residual process and discuss resampling procedures to approximate these distributions in practice. We illustrate our methods with a dataset from the Cystic Fibrosis registry.
Resumo:
BACKGROUND: Assessment of lung volume (FRC) and ventilation inhomogeneities with ultrasonic flowmeter and multiple breath washout (MBW) has been used to provide important information about lung disease in infants. Sub-optimal adjustment of the mainstream molar mass (MM) signal for temperature and external deadspace may lead to analysis errors in infants with critically small tidal volume changes during breathing. METHODS: We measured expiratory temperature in human infants at 5 weeks of age and examined the influence of temperature and deadspace changes on FRC results with computer simulation modeling. A new analysis method with optimized temperature and deadspace settings was then derived, tested for robustness to analysis errors and compared with the previously used analysis methods. RESULTS: Temperature in the facemask was higher and variations of deadspace volumes larger than previously assumed. Both showed considerable impact upon FRC and LCI results with high variability when obtained with the previously used analysis model. Using the measured temperature we optimized model parameters and tested a newly derived analysis method, which was found to be more robust to variations in deadspace. Comparison between both analysis methods showed systematic differences and a wide scatter. CONCLUSION: Corrected deadspace and more realistic temperature assumptions improved the stability of the analysis of MM measurements obtained by ultrasonic flowmeter in infants. This new analysis method using the only currently available commercial ultrasonic flowmeter in infants may help to improve stability of the analysis and further facilitate assessment of lung volume and ventilation inhomogeneities in infants.
Resumo:
We previously showed that lifetime cumulative lead dose, measured as lead concentration in the tibia bone by X-ray fluorescence, was associated with persistent and progressive declines in cognitive function and with decreases in MRI-based brain volumes in former lead workers. Moreover, larger region-specific brain volumes were associated with better cognitive function. These findings motivated us to explore a novel application of path analysis to evaluate effect mediation. Voxel-wise path analysis, at face value, represents the natural evolution of voxel-based morphometry methods to answer questions of mediation. Application of these methods to the former lead worker data demonstrated potential limitations in this approach where there was a tendency for results to be strongly biased towards the null hypothesis (lack of mediation). Moreover, a complimentary analysis using anatomically-derived regions of interest volumes yielded opposing results, suggesting evidence of mediation. Specifically, in the ROI-based approach, there was evidence that the association of tibia lead with function in three cognitive domains was mediated through the volumes of total brain, frontal gray matter, and/or possibly cingulate. A simulation study was conducted to investigate whether the voxel-wise results arose from an absence of localized mediation, or more subtle defects in the methodology. The simulation results showed the same null bias evidenced as seen in the lead workers data. Both the lead worker data results and the simulation study suggest that a null-bias in voxel-wise path analysis limits its inferential utility for producing confirmatory results.
Resumo:
BACKGROUND: Uncertainty exists about the performance of the Framingham risk score when applied in different populations. OBJECTIVE: We assessed calibration of the Framingham risk score (ie, relationship between predicted and observed coronary event rates) in US and non-US populations free of cardiovascular disease. METHODS: We reviewed studies that evaluated the performance of the Framingham risk score to predict first coronary events in a validation cohort, as identified by Medline, EMBASE, BIOSIS, and Cochrane library searches (through August 2005). Two reviewers independently assessed 1496 studies for eligibility, extracted data, and performed quality assessment using predefined forms. RESULTS: We included 25 validation cohorts of different population groups (n = 128,000) in our main analysis. Calibration varied over a wide range from under- to overprediction of absolute risk by factors of 0.57 to 2.7. Risk prediction for 7 cohorts (n = 18658) from the United States, Australia, and New Zealand was well calibrated (corresponding figures: 0.87-1.08; for the 5 biggest cohorts). The estimated population risks for first coronary events were strongly associated (goodness of fit: R2 = 0.84) and in good agreement with observed risks (coefficient for predicted risk: beta = 0.84; 95% CI 0.41-1.26). In 18 European cohorts (n = 109499), the corresponding figures indicated close association (R2 = 0.72) but substantial overprediction (beta = 0.58, 95% CI 0.39-0.77). The risk score was well calibrated on the intercept for both population clusters. CONCLUSION: The Framingham score is well calibrated to predict first coronary events in populations from the United States, Australia, and New Zealand. Overestimation of absolute risk in European cohorts requires recalibration procedures.
Resumo:
Objective-To evaluate pulsed-wave Doppler spectral parameters as a method for distinguishing between neoplastic and inflammatory peripheral lymphadenopathy in dogs. Sample Population-40 superficial lymph nodes from 33 dogs with peripheral lymphadenopathy. Procedures-3 Doppler spectral tracings were recorded from each node. Spectral Doppler analysis including assessment of the resistive index, peak systolic velocity-to-end diastolic velocity (S:D) ratio, diastolic notch velocity-to-peak systolic velocity (N:S) ratio, and end diastolic velocity-to-diastolic notch velocity ratio was performed for each tracing. Several calculation methods were used to determine the Doppler indices for each lymph node. After the ultrasonographic examination, fine needle aspirates or excisional biopsy specimens of the examined lymph nodes were obtained, and lymphadenopathy was classified as either inflammatory or neoplastic (lymphomatous or metastatic) via cytologic or histologic examination. Results of Doppler analysis were compared with cytologic or histopathologic findings. Results-The Doppler index with the highest diagnostic accuracy was the S:D ratio calculated from the first recorded tracing; a cutoff value of 3.22 yielded sensitivity of 91%, specificity of 100%, and negative predictive value of 89% for detection of neoplasia. Overall diagnostic accuracy was 95%. At a sensitivity of 100%, the most accurate index was the N:S ratio calculated from the first recorded tracing; a cutoff value of 0.45 yielded specificity of 67%, positive predictive value of 81%, and overall diagnostic accuracy of 86.5%. Conclusions and Clinical Relevance-Results suggested that noninvasive Doppler spectral analysis may be useful in the diagnosis of neoplastic versus inflammatory peripheral lymphadenopathy in dogs.
Resumo:
INTRODUCTION: Ultra-high-field whole-body systems (7.0 T) have a high potential for future human in vivo magnetic resonance imaging (MRI). In musculoskeletal MRI, biochemical imaging of articular cartilage may benefit, in particular. Delayed gadolinium-enhanced MRI of cartilage (dGEMRIC) and T2 mapping have shown potential at 3.0 T. Although dGEMRIC, allows the determination of the glycosaminoglycan content of articular cartilage, T2 mapping is a promising tool for the evaluation of water and collagen content. In addition, the evaluation of zonal variation, based on tissue anisotropy, provides an indicator of the nature of cartilage ie, hyaline or hyaline-like articular cartilage.Thus, the aim of our study was to show the feasibility of in vivo dGEMRIC, and T2 and T2* relaxation measurements, at 7.0 T MRI; and to evaluate the potential of T2 and T2* measurements in an initial patient study after matrix-associated autologous chondrocyte transplantation (MACT) in the knee. MATERIALS AND METHODS: MRI was performed on a whole-body 7.0 T MR scanner using a dedicated circular polarization knee coil. The protocol consisted of an inversion recovery sequence for dGEMRIC, a multiecho spin-echo sequence for standard T2 mapping, a gradient-echo sequence for T2* mapping and a morphologic PD SPACE sequence. Twelve healthy volunteers (mean age, 26.7 +/- 3.4 years) and 4 patients (mean age, 38.0 +/- 14.0 years) were enrolled 29.5 +/- 15.1 months after MACT. For dGEMRIC, 5 healthy volunteers (mean age, 32.4 +/- 11.2 years) were included. T1 maps were calculated using a nonlinear, 2-parameter, least squares fit analysis. Using a region-of-interest analysis, mean cartilage relaxation rate was determined as T1 (0) for precontrast measurements and T1 (Gd) for postcontrast gadopentate dimeglumine [Gd-DTPA(2-)] measurements. T2 and T2* maps were obtained using a pixelwise, monoexponential, non-negative least squares fit analysis; region-of-interest analysis was carried out for deep and superficial cartilage aspects. Statistical evaluation was performed by analyses of variance. RESULTS: Mean T1 (dGEMRIC) values for healthy volunteers showed slightly different results for femoral [T1 (0): 1259 +/- 277 ms; T1 (Gd): 683 +/- 141 ms] compared with tibial cartilage [T1 (0): 1093 +/- 281 ms; T1 (Gd): 769 +/- 150 ms]. Global mean T2 relaxation for healthy volunteers showed comparable results for femoral (T2: 56.3 +/- 15.2 ms; T2*: 19.7 +/- 6.4 ms) and patellar (T2: 54.6 +/- 13.0 ms; T2*: 19.6 +/- 5.2 ms) cartilage, but lower values for tibial cartilage (T2: 43.6 +/- 8.5 ms; T2*: 16.6 +/- 5.6 ms). All healthy cartilage sites showed a significant increase from deep to superficial cartilage (P < 0.001). Within healthy cartilage sites in MACT patients, adequate values could be found for T2 (56.6 +/- 13.2 ms) and T2* (18.6 +/- 5.3 ms), which also showed a significant stratification. Within cartilage repair tissue, global mean values showed no difference, with 55.9 +/- 4.9 ms for T2 and 16.2 +/- 6.3 ms for T2*. However, zonal assessment showed only a slight and not significant increase from deep to superficial cartilage (T2: P = 0.174; T2*: P = 0.150). CONCLUSION: In vivo T1 dGEMRIC assessment in healthy cartilage, and T2 and T2* mapping in healthy and reparative articular cartilage, seems to be possible at 7.0 T MRI. For T2 and T2*, zonal variation of articular cartilage could also be evaluated at 7.0 T. This zonal assessment of deep and superficial cartilage aspects shows promising results for the differentiation of healthy and affected articular cartilage. In future studies, optimized protocol selection, and sophisticated coil technology, together with increased signal at ultra-high-field MRI, may lead to advanced biochemical cartilage imaging.
Resumo:
OBJECTIVE: The aim of our study was to correlate global T2 values of microfracture repair tissue (RT) with clinical outcome in the knee joint. METHODS: We assessed 24 patients treated with microfracture in the knee joint. Magnetic resonance (MR) examinations were performed on a 3T MR unit, T2 relaxation times were obtained with a multi-echo spin-echo technique. T2 maps were obtained using a pixel wise, mono-exponential non-negative least squares fit analysis. Slices covering the cartilage RT were selected and region of interest analysis was done. An individual T2 index was calculated with global mean T2 of the RT and global mean T2 of normal, hyaline cartilage. The Lysholm score and the International Knee Documentation Committee (IKDC) knee evaluation forms were used for the assessment of clinical outcome. Bivariate correlation analysis and a paired, two tailed t test were used for statistics. RESULTS: Global T2 values of the RT [mean 49.8ms, standards deviation (SD) 7.5] differed significantly (P<0.001) from global T2 values of normal, hyaline cartilage (mean 58.5ms, SD 7.0). The T2 index ranged from 61.3 to 101.5. We found the T2 index to correlate with outcome of the Lysholm score (r(s)=0.641, P<0.001) and the IKDC subjective knee evaluation form (r(s)=0.549, P=0.005), whereas there was no correlation with the IKDC knee form (r(s)=-0.284, P=0.179). CONCLUSION: These findings indicate that T2 mapping is sensitive to assess RT function and provides additional information to morphologic MRI in the monitoring of microfracture.
Resumo:
Simulations of forest stand dynamics in a modelling framework including Forest Vegetation Simulator (FVS) are diameter driven, thus the diameter or basal area increment model needs a special attention. This dissertation critically evaluates diameter or basal area increment models and modelling approaches in the context of the Great Lakes region of the United States and Canada. A set of related studies are presented that critically evaluate the sub-model for change in individual tree basal diameter used in the Forest Vegetation Simulator (FVS), a dominant forestry model in the Great Lakes region. Various historical implementations of the STEMS (Stand and Tree Evaluation and Modeling System) family of diameter increment models, including the current public release of the Lake States variant of FVS (LS-FVS), were tested for the 30 most common tree species using data from the Michigan Forest Inventory and Analysis (FIA) program. The results showed that current public release of the LS-FVS diameter increment model over-predicts 10-year diameter increment by 17% on average. Also the study affirms that a simple adjustment factor as a function of a single predictor, dbh (diameter at breast height) used in the past versions, provides an inadequate correction of model prediction bias. In order to re-engineer the basal diameter increment model, the historical, conceptual and philosophical differences among the individual tree increment model families and their modelling approaches were analyzed and discussed. Two underlying conceptual approaches toward diameter or basal area increment modelling have been often used: the potential-modifier (POTMOD) and composite (COMP) approaches, which are exemplified by the STEMS/TWIGS and Prognosis models, respectively. It is argued that both approaches essentially use a similar base function and neither is conceptually different from a biological perspective, even though they look different in their model forms. No matter what modelling approach is used, the base function is the foundation of an increment model. Two base functions – gamma and Box-Lucas – were identified as candidate base functions for forestry applications. The results of a comparative analysis of empirical fits showed that quality of fit is essentially similar, and both are sufficiently detailed and flexible for forestry applications. The choice of either base function in order to model diameter or basal area increment is dependent upon personal preference; however, the gamma base function may be preferred over the Box-Lucas, as it fits the periodic increment data in both a linear and nonlinear composite model form. Finally, the utility of site index as a predictor variable has been criticized, as it has been widely used in models for complex, mixed species forest stands though not well suited for this purpose. An alternative to site index in an increment model was explored, using site index and a combination of climate variables and Forest Ecosystem Classification (FEC) ecosites and data from the Province of Ontario, Canada. The results showed that a combination of climate and FEC ecosites variables can replace site index in the diameter increment model.
Resumo:
Nitrogen and water are essential for plant growth and development. In this study, we designed experiments to produce gene expression data of poplar roots under nitrogen starvation and water deprivation conditions. We found low concentration of nitrogen led first to increased root elongation followed by lateral root proliferation and eventually increased root biomass. To identify genes regulating root growth and development under nitrogen starvation and water deprivation, we designed a series of data analysis procedures, through which, we have successfully identified biologically important genes. Differentially Expressed Genes (DEGs) analysis identified the genes that are differentially expressed under nitrogen starvation or drought. Protein domain enrichment analysis identified enriched themes (in same domains) that are highly interactive during the treatment. Gene Ontology (GO) enrichment analysis allowed us to identify biological process changed during nitrogen starvation. Based on the above analyses, we examined the local Gene Regulatory Network (GRN) and identified a number of transcription factors. After testing, one of them is a high hierarchically ranked transcription factor that affects root growth under nitrogen starvation. It is very tedious and time-consuming to analyze gene expression data. To avoid doing analysis manually, we attempt to automate a computational pipeline that now can be used for identification of DEGs and protein domain analysis in a single run. It is implemented in scripts of Perl and R.
Resumo:
Given a reproducing kernel Hilbert space (H,〈.,.〉)(H,〈.,.〉) of real-valued functions and a suitable measure μμ over the source space D⊂RD⊂R, we decompose HH as the sum of a subspace of centered functions for μμ and its orthogonal in HH. This decomposition leads to a special case of ANOVA kernels, for which the functional ANOVA representation of the best predictor can be elegantly derived, either in an interpolation or regularization framework. The proposed kernels appear to be particularly convenient for analyzing the effect of each (group of) variable(s) and computing sensitivity indices without recursivity.