791 resultados para artificial neural network (ANN)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para a obtenção do grau de Mestre em Engenharia Electrotécnica e de Computadores

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Numa Estação de Tratamento de Águas Residuais (ETAR), são elevados os custos não só de tratamento das águas residuais como também de manutenção dos equipamentos lá existentes, nesse sentido procura-se utilizar processos capazes de transformar os resíduos em produtos úteis. A Digestão Anaeróbia (DA) é um processo atualmente disponível capaz de contribuir para a redução da poluição ambiental e ao mesmo tempo de valorizar os subprodutos gerados. Durante o processo de DA é produzido um gás, o biogás, que pode ser utilizado como fonte de energia, reduzindo assim a dependência energética da ETAR e a emissão de gases com efeito de estufa para a atmosfera. A otimização do processo de DA das lamas é essencial para o aumento da produção de biogás, mas a complexidade do processo constitui um obstáculo à sua otimização. Neste trabalho, aplicaram-se Redes Neuronais Artificiais (RNA) ao processo de DA de lamas de ETAR. RNA são modelos simplificados inspirados no funcionamento das células neuronais humanas e que adquirem conhecimento através da experiência. Quando a RNA é criada e treinada, produz valores de output aproximadamente corretos para os inputs fornecidos. Foi esse o motivo para recorrer a RNA na otimização da produção de biogás no digestor I da ETAR Norte da SIMRIA, usando o programa NeuralToolsTM da PalisadeTM para desenvolvimento das RNA. Para tal, efetuou-se uma análise e tratamento de dados referentes aos últimos quatro anos de funcionamento do digestor. Os resultados obtidos permitiram concluir que as RNA modeladas apresentam boa capacidade de generalização do processo de DA. Considera-se que este caso de estudo é promissor, fornecendo uma boa base para o desenvolvimento de modelos eventualmente mais gerais de RNA que, aplicado conjuntamente com as características de funcionamento de um digestor e o processo de DA, permitirá otimizar a produção de biogás em ETAR.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The use of demand response programs enables the adequate use of resources of small and medium players, bringing high benefits to the smart grid, and increasing its efficiency. One of the difficulties to proceed with this paradigm is the lack of intelligence in the management of small and medium size players. In order to make demand response programs a feasible solution, it is essential that small and medium players have an efficient energy management and a fair optimization mechanism to decrease the consumption without heavy loss of comfort, making it acceptable for the users. This paper addresses the application of real-time pricing in a house that uses an intelligent optimization module involving artificial neural networks.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Energy systems worldwide are complex and challenging environments. Multi-agent based simulation platforms are increasing at a high rate, as they show to be a good option to study many issues related to these systems, as well as the involved players at act in this domain. In this scope the authors’ research group has developed a multi-agent system: MASCEM (Multi- Agent System for Competitive Electricity Markets), which simulates the electricity markets environment. MASCEM is integrated with ALBidS (Adaptive Learning Strategic Bidding System) that works as a decision support system for market players. The ALBidS system allows MASCEM market negotiating players to take the best possible advantages from the market context. This paper presents the application of a Support Vector Machines (SVM) based approach to provide decision support to electricity market players. This strategy is tested and validated by being included in ALBidS and then compared with the application of an Artificial Neural Network, originating promising results. The proposed approach is tested and validated using real electricity markets data from MIBEL - Iberian market operator.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Energy systems worldwide are complex and challenging environments. Multi-agent based simulation platforms are increasing at a high rate, as they show to be a good option to study many issues related to these systems, as well as the involved players at act in this domain. In this scope the authors’ research group has developed a multi-agent system: MASCEM (Multi-Agent System for Competitive Electricity Markets), which simulates the electricity markets. MASCEM is integrated with ALBidS (Adaptive Learning Strategic Bidding System) that works as a decision support system for market players. The ALBidS system allows MASCEM market negotiating players to take the best possible advantages from the market context. However, it is still necessary to adequately optimize the player’s portfolio investment. For this purpose, this paper proposes a market portfolio optimization method, based on particle swarm optimization, which provides the best investment profile for a market player, considering the different markets the player is acting on in each moment, and depending on different contexts of negotiation, such as the peak and offpeak periods of the day, and the type of day (business day, weekend, holiday, etc.). The proposed approach is tested and validated using real electricity markets data from the Iberian operator – OMIE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nos últimos anos o consumo de energia elétrica produzida a partir de fontes renováveis tem aumentado significativamente. Este aumento deve-se ao impacto ambiental que recursos como o petróleo, gás, urânio, carvão, entre outros, têm no meio ambiente e que são notáveis no diaa- dia com as alterações climáticas e o aquecimento global. Por sua vez, estes recursos têm um ciclo de vida limitado e a dada altura tornar-se-ão escassos. A preocupação de uma melhoria contínua na redução dos impactos ambientais levou à criação de Normas para uma gestão mais eficiente e sustentável do consumo de energia nos edifícios. Parte da eletricidade vendida pelas empresas de comercialização é produzida através de fontes renováveis, e com a recente publicação do Decreto de Lei nº 153/2014 de 20 outubro de 2014 que regulamenta o autoconsumo, permitindo que também os consumidores possam produzir a sua própria energia nas suas residências para reduzir os custos com a compra de eletricidade. Neste contexto surgiram os edifícios inteligentes. Por edifícios inteligentes entende-se que são edifícios construídos com materiais que os tornam mais eficientes, possuem iluminação e equipamentos elétricos mais eficientes, e têm sistemas de produção de energia que permitem alimentar o próprio edifício, para um consumo mais sustentado. Os sistemas implementados nos edifícios inteligentes visam a monitorização e gestão da energia consumida e produzida para evitar desperdícios de consumo. O trabalho desenvolvido visa o estudo e a implementação de Redes Neuronais Artificiais (RNA) para prever os consumos de energia elétrica dos edifícios N e I do ISEP/GECAD, bem como a previsão da produção dos seus painéis fotovoltáicos. O estudo feito aos dados de consumo permitiu identificar perfis típicos de consumo ao longo de uma semana e de que forma são influenciados pelo contexto, nomeadamente, com os dias da semana versus fim-de-semana, e com as estações do ano, sendo analisados perfis de consumo de inverno e verão. A produção de energia através de painéis fotovoltaicos foi também analisada para perceber se a produção atual é suficiente para satisfazer as necessidades de consumo dos edifícios. Também foi analisada a possibilidade da produção satisfazer parcialmente as necessidades de consumos específicos, por exemplo, da iluminação dos edifícios, dos seus sistemas de ar condicionado ou dos equipamentos usados.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Numa sociedade com elevado consumo energético, a dependência de combustíveis fósseis em evidente diminuição de disponibilidades é um tema cada vez mais preocupante, assim como a poluição atmosférica resultante da sua utilização. Existe, portanto, uma necessidade crescente de recorrer a energias renováveis e promover a otimização e utilização de recursos. A digestão anaeróbia (DA) de lamas é um processo de estabilização de lamas utilizado nas Estações de Tratamento de Águas Residuais (ETAR) e tem, como produtos finais, a lama digerida e o biogás. Maioritariamente constituído por gás metano, o biogás pode ser utilizado como fonte de energia, reduzindo, deste modo, a dependência energética da ETAR e a emissão de gases com efeito de estufa para a atmosfera. A otimização do processo de DA das lamas é essencial para o aumento da produção de biogás. No presente relatório de estágio, as Redes Neuronais Artificiais (RNA) foram aplicadas ao processo de DA de lamas de ETAR. As RNA são modelos simplificados inspirados no funcionamento das células neuronais humanas e que adquirem conhecimento através da experiência. Quando a RNA é criada e treinada, produz valores de output aproximadamente corretos para os inputs fornecidos. Uma vez que as DA são um processo bastante complexo, a sua otimização apresenta diversas dificuldades. Foi esse o motivo para recorrer a RNA na otimização da produção de biogás nos digestores das ETAR de Espinho e de Ílhavo da AdCL, utilizando o software NeuralToolsTM da PalisadeTM, contribuindo, desta forma, para a compreensão do processo e do impacto de algumas variáveis na produção de biogás.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Trabalho de Projeto apresentado como requisito parcial para obtenção do grau de Mestre em Estatística e Gestão de Informação

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The reduction of greenhouse gas emissions is one of the big global challenges for the next decades due to its severe impact on the atmosphere that leads to a change in the climate and other environmental factors. One of the main sources of greenhouse gas is energy consumption, therefore a number of initiatives and calls for awareness and sustainability in energy use are issued among different types of institutional and organizations. The European Council adopted in 2007 energy and climate change objectives for 20% improvement until 2020. All European countries are required to use energy with more efficiency. Several steps could be conducted for energy reduction: understanding the buildings behavior through time, revealing the factors that influence the consumption, applying the right measurement for reduction and sustainability, visualizing the hidden connection between our daily habits impacts on the natural world and promoting to more sustainable life. Researchers have suggested that feedback visualization can effectively encourage conservation with energy reduction rate of 18%. Furthermore, researchers have contributed to the identification process of a set of factors which are very likely to influence consumption. Such as occupancy level, occupants behavior, environmental conditions, building thermal envelope, climate zones, etc. Nowadays, the amount of energy consumption at the university campuses are huge and it needs great effort to meet the reduction requested by European Council as well as the cost reduction. Thus, the present study was performed on the university buildings as a use case to: a. Investigate the most dynamic influence factors on energy consumption in campus; b. Implement prediction model for electricity consumption using different techniques, such as the traditional regression way and the alternative machine learning techniques; and c. Assist energy management by providing a real time energy feedback and visualization in campus for more awareness and better decision making. This methodology is implemented to the use case of University Jaume I (UJI), located in Castellon, Spain.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Introduction: Coordination is a strategy chosen by the central nervous system to control the movements and maintain stability during gait. Coordinated multi-joint movements require a complex interaction between nervous outputs, biomechanical constraints, and pro-prioception. Quantitatively understanding and modeling gait coordination still remain a challenge. Surgeons lack a way to model and appreciate the coordination of patients before and after surgery of the lower limbs. Patients alter their gait patterns and their kinematic synergies when they walk faster or slower than normal speed to maintain their stability and minimize the energy cost of locomotion. The goal of this study was to provide a dynamical system approach to quantitatively describe human gait coordination and apply it to patients before and after total knee arthroplasty. Methods: A new method of quantitative analysis of interjoint coordination during gait was designed, providing a general model to capture the whole dynamics and showing the kinematic synergies at various walking speeds. The proposed model imposed a relationship among lower limb joint angles (hips and knees) to parameterize the dynamics of locomotion of each individual. An integration of different analysis tools such as Harmonic analysis, Principal Component Analysis, and Artificial Neural Network helped overcome high-dimensionality, temporal dependence, and non-linear relationships of the gait patterns. Ten patients were studied using an ambulatory gait device (Physilog®). Each participant was asked to perform two walking trials of 30m long at 3 different speeds and to complete an EQ-5D questionnaire, a WOMAC and Knee Society Score. Lower limbs rotations were measured by four miniature angular rate sensors mounted respectively, on each shank and thigh. The outcomes of the eight patients undergoing total knee arthroplasty, recorded pre-operatively and post-operatively at 6 weeks, 3 months, 6 months and 1 year were compared to 2 age-matched healthy subjects. Results: The new method provided coordination scores at various walking speeds, ranged between 0 and 10. It determined the overall coordination of the lower limbs as well as the contribution of each joint to the total coordination. The difference between the pre-operative and post-operative coordination values were correlated with the improvements of the subjective outcome scores. Although the study group was small, the results showed a new way to objectively quantify gait coordination of patients undergoing total knee arthroplasty, using only portable body-fixed sensors. Conclusion: A new method for objective gait coordination analysis has been developed with very encouraging results regarding the objective outcome of lower limb surgery.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This book combines geostatistics and global mapping systems to present an up-to-the-minute study of environmental data. Featuring numerous case studies, the reference covers model dependent (geostatistics) and data driven (machine learning algorithms) analysis techniques such as risk mapping, conditional stochastic simulations, descriptions of spatial uncertainty and variability, artificial neural networks (ANN) for spatial data, Bayesian maximum entropy (BME), and more.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents general problems and approaches for the spatial data analysis using machine learning algorithms. Machine learning is a very powerful approach to adaptive data analysis, modelling and visualisation. The key feature of the machine learning algorithms is that they learn from empirical data and can be used in cases when the modelled environmental phenomena are hidden, nonlinear, noisy and highly variable in space and in time. Most of the machines learning algorithms are universal and adaptive modelling tools developed to solve basic problems of learning from data: classification/pattern recognition, regression/mapping and probability density modelling. In the present report some of the widely used machine learning algorithms, namely artificial neural networks (ANN) of different architectures and Support Vector Machines (SVM), are adapted to the problems of the analysis and modelling of geo-spatial data. Machine learning algorithms have an important advantage over traditional models of spatial statistics when problems are considered in a high dimensional geo-feature spaces, when the dimension of space exceeds 5. Such features are usually generated, for example, from digital elevation models, remote sensing images, etc. An important extension of models concerns considering of real space constrains like geomorphology, networks, and other natural structures. Recent developments in semi-supervised learning can improve modelling of environmental phenomena taking into account on geo-manifolds. An important part of the study deals with the analysis of relevant variables and models' inputs. This problem is approached by using different feature selection/feature extraction nonlinear tools. To demonstrate the application of machine learning algorithms several interesting case studies are considered: digital soil mapping using SVM, automatic mapping of soil and water system pollution using ANN; natural hazards risk analysis (avalanches, landslides), assessments of renewable resources (wind fields) with SVM and ANN models, etc. The dimensionality of spaces considered varies from 2 to more than 30. Figures 1, 2, 3 demonstrate some results of the studies and their outputs. Finally, the results of environmental mapping are discussed and compared with traditional models of geostatistics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Self-organizing maps (Kohonen 1997) is a type of artificial neural network developedto explore patterns in high-dimensional multivariate data. The conventional versionof the algorithm involves the use of Euclidean metric in the process of adaptation ofthe model vectors, thus rendering in theory a whole methodology incompatible withnon-Euclidean geometries.In this contribution we explore the two main aspects of the problem:1. Whether the conventional approach using Euclidean metric can shed valid resultswith compositional data.2. If a modification of the conventional approach replacing vectorial sum and scalarmultiplication by the canonical operators in the simplex (i.e. perturbation andpowering) can converge to an adequate solution.Preliminary tests showed that both methodologies can be used on compositional data.However, the modified version of the algorithm performs poorer than the conventionalversion, in particular, when the data is pathological. Moreover, the conventional ap-proach converges faster to a solution, when data is \well-behaved".Key words: Self Organizing Map; Artificial Neural networks; Compositional data

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we study the relevance of multiple kernel learning (MKL) for the automatic selection of time series inputs. Recently, MKL has gained great attention in the machine learning community due to its flexibility in modelling complex patterns and performing feature selection. In general, MKL constructs the kernel as a weighted linear combination of basis kernels, exploiting different sources of information. An efficient algorithm wrapping a Support Vector Regression model for optimizing the MKL weights, named SimpleMKL, is used for the analysis. In this sense, MKL performs feature selection by discarding inputs/kernels with low or null weights. The approach proposed is tested with simulated linear and nonlinear time series (AutoRegressive, Henon and Lorenz series).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Although the determination of remaining phosphorus (Prem) is simple, accurate values could also be estimated with a pedotransfer function (PTF) aiming at the additional use of soil analysis data and/or Prem replacement by an even simpler determination. The purpose of this paper was to develop a pedotransfer function to estimate Prem values of soils of the State of São Paulo based on properties with easier or routine laboratory determination. A pedotransfer function was developed by artificial neural networks (ANN) from a database of Prem values, pH values measured in 1 mol L-1 NaF solution (pH NaF) and soil chemical and physical properties of samples collected during soil classification activities carried out in the State of São Paulo by the Agronomic Institute of Campinas (IAC). Furthermore, a pedotransfer function was developed by regressing Prem values against the same predictor variables of the ANN-based PTF. Results showed that Prem values can be calculated more accurately with the ANN-based pedotransfer function with the input variables pH NaF values along with the sum of exchangeable bases (SB) and the exchangeable aluminum (Al3+) soil content. In addition, the accuracy of the Prem estimates by ANN-based PTF were more sensitive to increases in the experimental database size. Although the database used in this study was not comprehensive enough for the establishment of a definitive pedotrasnfer function for Prem estimation, results indicated the inclusion of Prem and pH NaF measurements among the soil testing evaluations as promising ind order to provide a greater database for the development of an ANN-based pedotransfer function for accurate Prem estimates from pH NaF, SB, and Al3+ values.