998 resultados para adult worms
Resumo:
The potential for "replacement cells" to restore function in Parkinson's disease has been widely reported over the past 3 decades, rejuvenating the central nervous system rather than just relieving symptoms. Most such experiments have used fetal or embryonic sources that may induce immunological rejection and generate ethical concerns. Autologous sources, in which the cells to be implanted are derived from recipients' own cells after reprogramming to stem cells, direct genetic modifications, or epigenetic modifications in culture, could eliminate many of these problems. In a previous study on autologous brain cell transplantation, we demonstrated that adult monkey brain cells, obtained from cortical biopsies and kept in culture for 7 weeks, exhibited potential as a method of brain repair after low doses of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) caused dopaminergic cell death. The present study exposed monkeys to higher MPTP doses to produce significant parkinsonism and behavioral impairments. Cerebral cortical cells were biopsied from the animals, held in culture for 7 weeks to create an autologous neural cell "ecosystem" and reimplanted bilaterally into the striatum of the same six donor monkeys. These cells expressed neuroectodermal and progenitor markers such as nestin, doublecortin, GFAP, neurofilament, and vimentin. Five to six months after reimplantation, histological analysis with the dye PKH67 and unbiased stereology showed that reimplanted cells survived, migrated bilaterally throughout the striatum, and seemed to exert a neurorestorative effect. More tyrosine hydroxylase-immunoreactive neurons and significant behavioral improvement followed reimplantation of cultured autologous neural cells as a result of unknown trophic factors released by the grafts. J. Comp. Neurol. 522:2729-2740, 2014. © 2014 Wiley Periodicals, Inc.
Resumo:
External morphology of the adult of Dynamine postverta (Cramer) (Lepidoptera, Nymphalidae, Biblidinae) and patterns of morphological similarity among species from eight tribes of Nymphalidae. The external structure of the integument of Dynamine postverta postverta (Cramer, 1779) is based on detailed morphological drawings and scanning electron microscopy. The data are compared with other species belonging to eight tribes of Nymphalidae, to assist future studies on the taxonomy and systematics of Neotropical Biblidinae.
Resumo:
Glutathione (GSH) metabolism dysfunction is one risk factor in schizophrenia. A transitory brain GSH deficit was induced in Wistar (WIS) and mutant (ODS; lacking ascorbic acid synthesis) rats using BSO (l-buthionine-(S,R)-sulfoximine) from post-natal days 5-16. When GSH was re-established to physiological levels, juvenile BSO-ODS rats were impaired in the water maze task. Long after treatment cessation, adult BSO-WIS/-ODS rats showed impaired place discrimination in the homing board with distributed visual or olfactory cues. Their accuracy was restored when a single cue marked the trained position. Similarly, more working memory errors were made by adult BSO-WIS in the radial maze when several olfactory cues were present. These results reveal that BSO rats did not suffer simple sensory impairment. They were selectively impaired in spatial memory when the task required the integration of multimodal or olfactory cues. These results, in part, resemble some of the reported olfactory discrimination and cognitive impairment in schizophrenia.
Resumo:
Young and adult Long Evans rats were tested in the water maze according to two different procedures: half of the subjects were given one session of four trials a day for 6 days, whereas the other subjects had the same amount of training massed in 1 day. For both conditions, a 14-day retention interval was then introduced to test long-term memory. This was followed by a four-trial reversal session. All groups showed a significant learning curve, but escape latencies were shorter for the adult than for the young rats, without differential effect of the training procedure. A first probe trial (PT1) confirmed similar accurate short-term retention in all the groups. But unimpaired long-term memory was only seen in the adult rats trained with the spaced procedure. The young rats trained over 1 day also showed some retention of the platform location after 14 days, but not the other two groups. Reversal acquisition of the new platform location was rapid in the four groups. These results indicate that although accurate short-term spatial memory in the water maze is seen after a 1-day massed training in both age groups, unimpaired long-term retention is only observed in adult rats trained with 24-h inter-session intervals.
Resumo:
ABSTRACT The male of Hirmoneuropsis luctuosa (Philippi, 1865) is redescribed and the puparium is described and illustrated for the first time. Hirmoneuropsis luctuosa is compared with other species of the genus. Illustrations of diagnostic characters of the male and pupa are also provided.
Resumo:
Background: Language processing abnormalities and inhibition difficulties are hallmark features of schizophrenia. The objective of this study is to asses the blood oxygenation level-dependent (BOLD) response at two different stages of the illness and compare the frontal activity between adolescents and adults with schizophrenia. Methods: 10 adults with schizophrenia (mean age 31,5 years) and 6 psychotic adolescents with schizophrenic symptoms (mean age 16,2 years) underwent functional magnetic resonance imaging while performing two frontal tasks. Regional activation is compared in the bilateral frontal areas during a covert verbal fluency task (letter version) and a Stroop task (inhibition task). Results: Preliminary results show poorer task performance and less frontal cortex activation during both tasks in the adult group of patients with schizophrenia. In the adolescent patients group, fMRI analysis show significant and larger activity in the left frontal operculum (Broca's area) in the verbal fluency task and greater activity in the medium cingulate during the inhibition phase of the Stroop task. Conclusions: These preliminary findings suggest a decrease of frontal activity in the course of the illness. We assume that schizophrenia contributes to frontal brain activity reduction.
Resumo:
BACKGROUND: Adult neurogenesis occurs in the hippocampus of most mammals, including humans, and plays an important role in hippocampal-dependent learning. This process is highly regulated by neuronal activity and might therefore be vulnerable to anesthesia. In this article, the authors investigated this possibility by evaluating the impact of propofol anesthesia on mouse hippocampal neurons generated during adulthood, at two functionally distinct maturational stages of their development. METHODS: Adult-born hippocampal neurons were identified using the cell proliferation marker bromodeoxyuridine or a retroviral vector expressing the green fluorescent protein in dividing cells and their progenies. Eleven or 17 days after the labeling procedure, animals (n = 3-5 animals per group) underwent a 6-h-long propofol anesthesia. Twenty-one days after labeling, the authors analyzed the survival, differentiation, and morphologic maturation of adult-born neurons using confocal microscopy. RESULTS: Propofol impaired the survival and maturation of adult-born neurons in an age-dependent manner. Anesthesia induced a significant decrease in the survival of neurons that were 17 days old at the time of anesthesia, but not of neurons that were 11 days old. Similarly, propofol anesthesia significantly reduced the dendritic maturation of neurons generated 17 days before anesthesia, without interfering with the maturation of neurons generated 11 days before anesthesia. CONCLUSIONS: These results reveal that propofol impairs the survival and maturation of adult-born hippocampal neurons in a developmental stage-dependent manner in mice.
Resumo:
In adult mammals, neural progenitors located in the dentate gyrus retain their ability to generate neurons and glia throughout lifetime. In rodents, increased production of new granule neurons is associated with improved memory capacities, while decreased hippocampal neurogenesis results in impaired memory performance in several memory tasks. In mouse models of Alzheimer's disease, neurogenesis is impaired and the granule neurons that are generated fail to integrate existing networks. Thus, enhancing neurogenesis should improve functional plasticity in the hippocampus and restore cognitive deficits in these mice. Here, we performed a screen of transcription factors that could potentially enhance adult hippocampal neurogenesis. We identified Neurod1 as a robust neuronal determinant with the capability to direct hippocampal progenitors towards an exclusive granule neuron fate. Importantly, Neurod1 also accelerated neuronal maturation and functional integration of new neurons during the period of their maturation when they contribute to memory processes. When tested in an APPxPS1 mouse model of Alzheimer's disease, directed expression of Neurod1 in cycling hippocampal progenitors conspicuously reduced dendritic spine density deficits on new hippocampal neurons, to the same level as that observed in healthy age-matched control animals. Remarkably, this population of highly connected new neurons was sufficient to restore spatial memory in these diseased mice. Collectively our findings demonstrate that endogenous neural stem cells of the diseased brain can be manipulated to become new neurons that could allow cognitive improvement.
Resumo:
D-3 Dependent Adult Abuse Report
Resumo:
Nine children surviving severe adult respiratory distress syndrome were studied 0.9 to 4.2 years after the acute illness. They had received artificial ventilation for a mean of 9.4 days, with an Fio2 greater than 0.5 during a mean time of 34 hours and maximal positive end expiratory pressure levels in the range of 8 to 20 cm H2O. Three children had recurrent respiratory symptoms (moderate exertional dyspnea and cough), and two had evidence of fibrosis on chest radiographs. All patients had abnormal lung function; the most prominent findings were ventilation inequalities, as judged by real-time moment ratio analysis of multibreath nitrogen washout curves (abnormal in eight of nine patients) and hypoxemia (seven of nine). Lung volumes were less abnormal; one patient had restrictive and two had obstructive disease. A significant correlation between intensive care measures (Fio2 greater than 0.5 in hours and peak inspiratory plateau pressure) and lung function abnormalities (moment ratio analysis and hypoxemia) was found. A possibly increased susceptibility of the pediatric age group to the primary insult or respiratory therapy of adult respiratory distress syndrome is suggested.
Resumo:
We have shown that a local administration of thyroid hormones (T3) at the level of transected rat sciatic nerve induced a significant increase in the number of regenerated axons. To address the question of whether local administration of T3 rescues the axotomized sensory neurons from death, in the present study we estimated the total number of surviving neurons per dorsal root ganglion (DRG) in three experimental group animals. Forty-five days following rat sciatic nerve transection, the lumbar (L4 and L5) DRG were removed from PBS-control, T3-treated as well as from unoperated rats, and serial sections (1 microm) were cut. The physical dissector method was used to estimate the total number of sensory neurons in the DRGs. Our results revealed that in PBS-control rats transection of sciatic nerve leads to a significant (P < 0.001) decrease in the mean number of sensory neurons (8743.8 +/- 748.6) compared with the number of neurons in nontransected ganglion (mean 13,293.7 +/- 1368.4). However, administration of T3 immediately after sciatic nerve transection rescues a great number of axotomized neurons so that their mean neuron number (12,045.8 +/- 929.8) is not significantly different from the mean number of neurons in the nontransected ganglion. In addition, the volume of ganglia showed a similar tendency. These results suggest that T3 rescues a high number of axotomized sensory neurons from death and allows these cells to grow new axons. We believe that the relative preservation of neurons is important in considering future therapeutic approaches of human peripheral nerve lesion and sensory neuropathy.
Resumo:
Defects in the interleukin-2 receptor gamma (IL-2R gamma) chain in the man result in an X-linked severe combined immunodeficiency, SCIDX1, characterized by an absence of T-cell differentiation. This phenotype may result from pertubations in IL-2, IL-4-, IL-7- or IL-15-mediated signaling, as the IL-2R gamma chain forms an integral component of these receptor systems. We have isolated and characterized cDNA and genomic clones for the murine IL-2R gamma. The gene (Il2rg) is well conserved between mouse and man with respect to overall structure and size, and contains regions of high conservation in the promoter region as well. Il2rg maps to mouse X chromosome region 40, in a region of synteny with human Xq12-13.1. We have also explored the expression of the IL-2R gamma during thymocyte development. IL-2R gamma transcripts are detected in the earliest thymocyte precursor cells and persist throughout intrathymic development into the mature peripheral compartment. Genomic clones for the murine IL-2R gamma will allow for further studies on the regulation and function of this gene in vivo.
Resumo:
Autologous brain cell transplantation might be useful for repairing lesions and restoring function of the central nervous system. We have demonstrated that adult monkey brain cells, obtained from cortical biopsy and kept in culture for a few weeks, exhibit neural progenitor characteristics that make them useful for brain repair. Following MPTP treatment, primates were dopamine depleted but asymptomatic. Autologous cultured cells were reimplanted into the right caudate nucleus of the donor monkey. Four months after reimplantation, histological analysis by stereology and TH immunolabeling showed that the reimplanted cells successfully survived, bilaterally migrated in the whole striatum, and seemed to have a neuroprotection effect over time. These results may add a new strategy to the field of brain neuroprotection or regeneration and could possibly lead to future clinical applications.