972 resultados para ab initio electronic structure theory


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thomas-Fermi theory is developed to evaluate nuclear matrix elements averaged on the energy shell, on the basis of independent particle Hamiltonians. One- and two-body matrix elements are compared with the quantal results, and it is demonstrated that the semiclassical matrix elements, as function of energy, well pass through the average of the scattered quantum values. For the one-body matrix elements it is shown how the Thomas-Fermi approach can be projected on good parity and also on good angular momentum. For the two-body case, the pairing matrix elements are considered explicitly.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We illustrate how to apply modern effective field-theory techniques and dimensional regularization to factorize the various scales, which appear in QED bound states at finite temperature. We focus here on the muonic hydrogen atom. Vacuum polarization effects make the physics of this atom at finite temperature very close to that of heavy quarkonium states. We comment on the implications of our results for these states in the quark gluon plasma. In particular, we estimate the effects of a finite-charm quark mass in the dissociation temperature of bottomonium.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An extension of the spin density functional theory simultaneously accounting for dielectric mismatch between neighboring materials and nonparabolicity corrections originating from interactions between conduction and valence bands is presented. This method is employed to calculate ground state and addition energy spectra of homogeneous and multishell spherical quantum dots. Our calculations reveal that corrections become especially relevant when they come into play simultaneously in strong regimes of spatial confinement.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

By means of the ab initio cluster-model approach, we present theoretical evidence for two different mechanisms of bonding of atomic Al to Si(111). On the atop site (T1) the interaction of atomic Al to Si(111) is characteristic of an ionic bond whereas interaction above the threefold eclipsed site (T4) leads to the formation of a typical covalent bond. Moreover, both sites have a similar interaction energy if electronic correlation effects are included. While the conclusions regarding the nature of the chemisorption bond in the two sites do not depend either on the cluster-model size, the kind of embedding hydrogen atoms used, or the quality of the wave function (Hartree-Fock or configuration interaction), the chemisorption energy depends strongly on the wave function used. In fact, inclusion of correlation energy is necessary to properly describe the interaction energies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Magnetic interactions in ionic solids are studied using parameter-free methods designed to provide accurate energy differences associated with quantum states defining the Heisenberg constant J. For a series of ionic solids including KNiF3, K2NiF4, KCuF3, K2CuF4, and high- Tc parent compound La2CuO4, the J experimental value is quantitatively reproduced. This result has fundamental implications because J values have been calculated from a finite cluster model whereas experiments refer to infinite solids. The present study permits us to firmly establish that in these wide-gap insulators, J is determined from strongly local electronic interactions involving two magnetic centers only thus providing an ab initio support to commonly used model Hamiltonians.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The electronic structure of the molecular solid Ni(tmdt)2, the only well characterized neutral molecular metal to date, has been studied by means of first-principles density functional calculations. It is shown that these calculations correctly describe the metallic vs semiconducting behavior of molecular conductors of this type. The origin of the band overlap leading to the metallic character and the associated Fermi surfaces has been studied.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The electronic structure and properties of cerium oxides (CeO2 and Ce2O3) have been studied in the framework of the LDA+U and GGA(PW91)+U implementations of density functional theory. The dependence of selected observables of these materials on the effective U parameter has been investigated in detail. The examined properties include lattice constants, bulk moduli, density of states, and formation energies of CeO2 and Ce2O3. For CeO2, the LDA+U results are in better agreement with experiment than the GGA+U results whereas for the computationally more demanding Ce2O3 both approaches give comparable accuracy. Furthermore, as expected, Ce2O3 is much more sensitive to the choice of the U value. Generally, the PW91 functional provides an optimal agreement with experiment at lower U energies than LDA does. In order to achieve a balanced description of both kinds of materials, and also of nonstoichiometric CeO2¿x phases, an appropriate choice of U is suggested for LDA+U and GGA+U schemes. Nevertheless, an optimum value appears to be property dependent, especially for Ce2O3. Optimum U values are found to be, in general, larger than values determined previously in a self-consistent way.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work the adsorption mechanisms of atomic and molecular oxygen on Cu(100) surface are studied using ab initio simulation methods. Through the atomistic scale under-standing of the elementary oxidation processes we can further understand the large-scale oxidation. Copper is a material widely used in industry which makes it an interesting subject, and also understanding the oxidation of copper helps us understand the oxidation mechanism of other metals. First we have a look on some theory on surface alloys in general and behaviour of Ag on Cu(100) surface. After that the physical background there is behind the methods of density functional calculations are discussed, and some methods, namely potential energy surfaces and molecular dynamics, are introduced. Then there is a brief look on the numerical details used in the calculations, and after that, the results of the simulations are exhibited.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Both the intermolecular interaction energies and the geometries for M ̄ thiophene, M ̄ pyrrole, M n+ ̄ thiophene, and M n+ ̄ pyrrole ͑with M = Li, Na, K, Ca, and Mg; and M n+ = Li+ , Na+ , K+ , Ca2+, and Mg2+͒ have been estimated using four commonly used density functional theory ͑DFT͒ methods: B3LYP, B3PW91, PBE, and MPW1PW91. Results have been compared to those provided by HF, MP2, and MP4 conventional ab initio methods. The PBE and MPW1PW91 are the only DFT methods able to provide a reasonable description of the M ̄ complexes. Regarding M n+ ̄ ␲ complexes, the four DFT methods have been proven to be adequate in the prediction of these electrostatically stabilized systems, even though they tend to overestimate the interaction energies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

AIM: Heart disease is recognized as a consequence of dysregulation of cardiac gene regulatory networks. Previously, unappreciated components of such networks are the long non-coding RNAs (lncRNAs). Their roles in the heart remain to be elucidated. Thus, this study aimed to systematically characterize the cardiac long non-coding transcriptome post-myocardial infarction and to elucidate their potential roles in cardiac homoeostasis. METHODS AND RESULTS: We annotated the mouse transcriptome after myocardial infarction via RNA sequencing and ab initio transcript reconstruction, and integrated genome-wide approaches to associate specific lncRNAs with developmental processes and physiological parameters. Expression of specific lncRNAs strongly correlated with defined parameters of cardiac dimensions and function. Using chromatin maps to infer lncRNA function, we identified many with potential roles in cardiogenesis and pathological remodelling. The vast majority was associated with active cardiac-specific enhancers. Importantly, oligonucleotide-mediated knockdown implicated novel lncRNAs in controlling expression of key regulatory proteins involved in cardiogenesis. Finally, we identified hundreds of human orthologues and demonstrate that particular candidates were differentially modulated in human heart disease. CONCLUSION: These findings reveal hundreds of novel heart-specific lncRNAs with unique regulatory and functional characteristics relevant to maladaptive remodelling, cardiac function and possibly cardiac regeneration. This new class of molecules represents potential therapeutic targets for cardiac disease. Furthermore, their exquisite correlation with cardiac physiology renders them attractive candidate biomarkers to be used in the clinic.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Oxygen vacancies in metal oxides are known to determine their chemistry and physics. The properties of neutral oxygen vacancies in metal oxides of increasing complexity (MgO, CaO, alpha-Al2O3, and ZnO) have been studied using density functional theory. Vacancy formation energies, vacancy-vacancy interaction, and the barriers for vacancy migration are determined and rationalized in terms of the ionicity, the Madelung potential, and lattice relaxation. It is found that the Madelung potential controls the oxygen vacancy properties of highly ionic oxides whereas a more complex picture arises for covalent ZnO.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thermodynamic properties and radial distribution functions for liquid chloroform were calculated using the Monte Carlo method implemented with Metropolis algorithm in the NpT ensemble at 298 K and 1 atm. A five site model was developed to represent the chloroform molecules. A force field composed by Lennard-Jones and Coulomb potential functions was used to calculate the intermolecular energy. The partial charges needed to represent the Coulombic interactions were obtained from quantum chemical ab initio calculations. The Lennard-Jones parameters were adjusted to reproduce experimental values for density and enthalpy of vaporization for pure liquid. All thermodynamic results are in excelent agreement with experimental data. The correlation functions calculated are in good accordance with theoretical results avaliable in the literature. The free energy for solvating one chloroform molecule into its own liquid at 298 K and 1 atm was computed as an additional test of the potential model. The result obtained compares well with the experimental value. The medium effects on cis/trans convertion of a hypotetical solute in water TIP4P and chloroform solvents were also accomplished. The results obtained from this investigation are in agreement with estimates of the continuous theory of solvation.