996 resultados para Yttrium iron garnet
Resumo:
A surface-renewable tris (1,10-phenanthroline-5, 6-dione) iron (II) hexafluorophosphate (FePD) modified carbon ceramic electrode was constructed by dispersing FePD and graphite powder in methyltrimethoxysilane (MTMOS) based gels. The FePD-modified electrode presented pH dependent voltammetric behavior, and its peak currents were diffusion-controlled in 0.1 mol/L Na2SO4 + H2SO4 solution (pH = 0. 4). In the, presence of iodate, clear electrocatalytic reduction waves were observed and thus the chemically modified electrode was used as an amperometric sensor for iodate in common salt. The linear range, sensitivity, detection limit and response time of the iodate sensor were 5 x 10(-6)-1 x 10(-2) mol/L, 7.448 muA.L/mmol, 1.2 x 10(-6) mol/L and 5 s, respectively. A distinct advantage of this sensor is its good reproducibility of surface-renewal by simple mechanical polishing.
Resumo:
The unsymmetrical allyl containing post-metallocene complex [ArN = C( Me)] [(ArN)-N-' = C(Me)]C5H3NFeCl2 [Ar = 2,6(i- Pr)(2)C6H3, Ar' = 4-allyl-2,6-(i-Pr)(2)C6H3] (3) has been prepared and characterized. Complex (3) can be co-polymerized with styrene in the presence of radical initiator to produce polymerized post-metallocene catalyst which exhibits high activity for ethylene polymerization (2.5 x 10(6) g PE/mol Fe.h).
Resumo:
The new topological indices A(x1)-A(x3) suggested in our laboratories were applied to the study of structure-property relationships between color reagents and their color reactions with yttrium. The topological indices of twenty asymmetrical phosphone bisazo derivatives of chromotropic acid were calculated. The work shows that QSPR can be used as a novel aid to predict the molar absorptivities of color reactions and in the long term to be helpful tool in-color reagent design. Multiple regression analysis and neural network were employed simultaneously in this study. The results demonstrated the feasibility and the effectiveness of the method.
Resumo:
Tridentate ligand[(2,6-ArN=C(Me))(2)C5H3N](Ar=4-allyl-2,6-(i-Pr)(2)C6H3)(4)which contains allyl groups on each aryl ring was ready prepared and reacted with FeCl2. 4H(2)O to give the precatalyst [(2,6-ArN=C(CH3))(2)C5H3N]. FeCl2 (5). Compounds 2-5 were characterized by H-1 NMR, EI-MS,and IR. The complex 5 which was actived by methylaluminoxane(MAO) exhibits high activity for ethylene polymerization [1.9 x 10(6) g pE.(mol Fe . h)(-1) at 0 degreesC]. It was showed that the activity was decreased with increasing temperature and the polymer product was highly linear PE with (M) over bar (eta) varying from 50000 to 260000.
Resumo:
A unique reverse micelle method has been developed to prepare gold-coated iron (Fe@Au) nanoparticles. XRD, UV/vis, TEM, and magnetic measurements are utilized to characterize the nanocomposites. XRD only gives FCC patterns of gold for the obtained nanoparticles. The absorption band of the Fe@Au colloid shifts to a longer wavelength and broadens relative to that of the pure gold colloid. TEM results show that the average size of Fe@Au nanoparticles is about 10 nm, These nanoparticles are self-assembled into chains on micron scale under a 0.5 T magnetic field. Magnetic measurements show that the particles are superparamagnetic with a blocking temperature (T-B) of 42 K, At 300 K (above T-B), no coercivity (Hc) and remanence (M-r) is observed in the magnetization curve, while at 2K (below T-B) He and M, are observed to be 728 Oe and 4.12 emu/g, respectively, (C) 2001 Academic Press.
Resumo:
Hybrid linear analysis (HLA) was applied to resolution of overlapping spectra of Fe3+-salicylfluorone and Al3+-salicylfluorone complexes and simultaneous spectrophotometric determination of Fe3+ and Al3+. The absorbance matrix of 7 standard mixtures at 41 measuring points ranged from the wavelength of 550 nm to 630 nm was used for calibration. To avoid the effect of interaction between the two components on the determination, the column vector of K matrix obtained from the standard mixtures with least squares was used as the pure spectrum of component. The recoveries of the two elements for the analysis of the synthetic samples were 93.3% similar to 107.5% in the range of the concentration ratio of Fe3+:Al3+ = 10:1 to 1:8. Comparing with the partial least squares (PIS) model, the HLA method was simple, accuracy and precise.
Resumo:
Firstly reported for Fe-containing transition metal substituted polyoxometalates was an unusual Fe-centered demetalation process induced by the reduction of ZnW11FeIII to ZnW11FeII which resulted in a new couple of Fe-relating redox waves at positive potentials. (C) 1999 Elsevier Science S.A. All rights reserved.
Resumo:
The film by tetraphenylporphyrin((TPP)H-2) vapor deposition on iron was investigated by means of XPS, SEM and visible spectroscopy. N(1s) binding energy characteristic of(TPP)H-2 was gained directly from the deposited samples. N(1s) binding energy of the surface was greatly changed after the deposited sample was washed with solvent. It is indicated that the deposited film is composed of an outer-layer of physically adsorbed (TPP)H-2, and an inner-layer of chemically modified (TPP)H-2.
Resumo:
High-pressure synthesis of garnet Gd3In2Ga3O12 is reported. It was found that the pressure-temperature region for the synthesis of Gd3In2Ga3O12 can be expressed as T(degrees C) < 2350-250P(GPa), and high pressure greatly reduced the reaction time. It was also found that the garnet Gd3In2Ga3O12 decomposed to GdGaO3 and In2O3 under 3.5 GPa and 1650 degrees C, and this process was accompanied by an increasing density of the products and an increasing coordination number for Ga3+ (4 to 6).
Resumo:
Measurement of iron and manganese is very important in evaluating the quality of natural waters. We have constructed an automated Fe(II), total dissolved iron(TDI), Mn(II), and total dissolved manganese(TDM) analysis system for the quality control of underground drinking water by reverse flow injection analysis and chemiluminescence detection(rFIA-CL), The method is based on the measurement of the metal-catalyzed light emission from luminol oxidation by potassium periodate. The typical signal is a narrow peak, in which the height is proportional to light emitted and hence to the concentration of metal ions. The detection limits were 3 x 10(-6) mu g ml(-1) for Fe(II) and the linear range extents up to 1.0 x 10(-4) and 5 x 10(-6) mu g ml(-1) for Mn(II) cover a linear range to 1.0 x 10(-4) mu g ml(-1). This method was used for automated in-situ monitoring of total dissolved iron and total dissolved in underground water during water treatment. (C) 1997 Elsevier Science B.V.
Resumo:
Iron(II)-8-quinolino/MCM-41 is prepared. Its catalysis is studied in phenol hydroxylation using H2O2 (30%) as oxidant. The experiment shows that Iron(II)-8-quinolinol/MCM-41 has good catalytic activity and desired stability. Based on cyclic voltammetry, ESR, and UV-visible spectra studies of iron(II)-8-quinolinol complex in liquid phase, a radical substitution mechanism is proposed and used to demonstrate the experimental facts clearly. (C) 1997 Academic Press.
Resumo:
Iron phenanthroline - and 8 - hydroxyquinoline complexes /Y zeolite, denoted a FePhen/Y and FeOx/Y respectively, were prepared; The formation of the metal complexes mentioned above within the cages of Y zeolite and their crystal structures were determined by elemental analyses, diffuse reflectance UV-Vis,SEM,BET,and XRD methods; The influence of experimental parameters upon phenol conversion and product selectivities were investigated as well.
Resumo:
Phenol hydroxylation catalyzed by iron(II)-1,10-phenanthroline is investigated through kinetics, ESR, W-Vis as well as cyclic voltammogram studies. The optimum reaction conditions are obtained for diphenols production. Radical substitution mechanism is first proposed to explain the effects of pH, reaction medium and other factors on the phenol hydroxylation with H2O2 as oxidant, and found that the coexisting of iron(II)-1,10-phenanthroline and iron(III)-1,10-phenanthroline is the key for phenol hydroxylation to occur with H2O2 as oxygen donor.
Resumo:
The rheological properties and crystallization characteristics of low ethylene content poly propylene (EPM) with and without Yittrium oxide (Y2O3) as a filler was investigated by cone-plate viscometer and differential scanning calorimetry. Yittrium oxide had a profound effect on the viscosities of the systems. To determine the nonisothermal crystallization rate of the materials, a new estimation method was used. From the results, we can conclude that Y2O3 acts as a nucleating agent, which increased the crystallization rate of the EPM. (C) 1996 John Wiley & Sons, Inc.
Resumo:
MCM-41 zeolite and Tron (II)-Phen/MCM-41 zeolite have been prepared and characterized by XRD, IR, NH3-TPD, HET and UV-Vis. The Iron( II)-Phen/MCM-41 zeolite+30% H2O2 system is capable for catalyzing hydroxylation of phenol.