895 resultados para Wnt-3a
Resumo:
OBJECTIVES: Etravirine (ETV) is metabolized by cytochrome P450 (CYP) 3A, 2C9, and 2C19. Metabolites are glucuronidated by uridine diphosphate glucuronosyltransferases (UGT). To identify the potential impact of genetic and non-genetic factors involved in ETV metabolism, we carried out a two-step pharmacogenetics-based population pharmacokinetic study in HIV-1 infected individuals. MATERIALS AND METHODS: The study population included 144 individuals contributing 289 ETV plasma concentrations and four individuals contributing 23 ETV plasma concentrations collected in a rich sampling design. Genetic variants [n=125 single-nucleotide polymorphisms (SNPs)] in 34 genes with a predicted role in ETV metabolism were selected. A first step population pharmacokinetic model included non-genetic and known genetic factors (seven SNPs in CYP2C, one SNP in CYP3A5) as covariates. Post-hoc individual ETV clearance (CL) was used in a second (discovery) step, in which the effect of the remaining 98 SNPs in CYP3A, P450 cytochrome oxidoreductase (POR), nuclear receptor genes, and UGTs was investigated. RESULTS: A one-compartment model with zero-order absorption best characterized ETV pharmacokinetics. The average ETV CL was 41 (l/h) (CV 51.1%), the volume of distribution was 1325 l, and the mean absorption time was 1.2 h. The administration of darunavir/ritonavir or tenofovir was the only non-genetic covariate influencing ETV CL significantly, resulting in a 40% [95% confidence interval (CI): 13-69%] and a 42% (95% CI: 17-68%) increase in ETV CL, respectively. Carriers of rs4244285 (CYP2C19*2) had 23% (8-38%) lower ETV CL. Co-administered antiretroviral agents and genetic factors explained 16% of the variance in ETV concentrations. None of the SNPs in the discovery step influenced ETV CL. CONCLUSION: ETV concentrations are highly variable, and co-administered antiretroviral agents and genetic factors explained only a modest part of the interindividual variability in ETV elimination. Opposing effects of interacting drugs effectively abrogate genetic influences on ETV CL, and vice-versa.
Resumo:
Skin appendages such as teeth and hair share several common signaling pathways. The nuclear factor I C (NFI-C) transcription factor has been implicated in tooth development, but a potential role in hair growth had not been assessed. In this study we found that NFI-C regulates the onset of the hair growth cycle. NFI-C(-/-) mice were delayed in the transition from the telogen to anagen phase of the hair follicle cycle after either experimental depilation or spontaneous hair loss. Lack of NFI-C resulted in delayed induction of the sonic hedgehog, Wnt5a, and Lef1 gene expression, which are key regulators of the hair follicle growth initiation. NFI-C(-/-) mice also showed elevated levels of transforming growth factor β1 (TGF-β1), an inhibitor of keratinocyte proliferation, and of the cell cycle inhibitor p21 at telogen. Reduced expression of Ki67, a marker of cell proliferation, was noted at the onset of anagen, indicating impaired activation of the hair progenitor cells. These findings implicate NFI-C in the repression of TGF-β1 signaling during telogen stage, resulting in the delay of progenitor cell proliferation and hair follicle regeneration in NFI-C-deficient mice. Taken together with prior observations, these findings also designate NFI-C as a regulator of adult progenitor cell proliferation and of postnatal tissue growth or regeneration.
Resumo:
This report, entitled Iowa Highway Research and Development Activities FY2014 is submitted in compliance with Iowa Code sections 310.36 and 312.3A, which direct the submission of a report of the Secondary Road Research Fund and the Street Research Fund, respectively. It is a report of the status of research and development projects in process on June 20, 2014. It is also a report on projects completed during the fiscal year beginning July 1, 2013 and ending June 30, 2014. Detailed information on each of the research and development projects mentioned in this report is available from the office of Research and Analytics, Performance and Technology Division, Iowa Department of Transportation. All approved reports are also online for viewing at: http://www.iowadot.gov/research/pdf/IHRBAnnualReport.pdf.
Resumo:
Mutations in the FGD1 gene have been shown to cause Aarskog-Scott syndrome (AAS), or facio-digito-genital dysplasia (OMIM#305400), an X-linked disorder characterized by distinctive genital and skeletal developmental abnormalities with a broad spectrum of clinical phenotypes. To date, 20 distinct mutations have been reported, but little phenotypic data are available on patients with molecularly confirmed AAS. In the present study, we report on our experience of screening for mutations in the FGD1 gene in a cohort of 60 European patients with a clinically suspected diagnosis of AAS. We identified nine novel mutations in 11 patients (detection rate of 18.33%), including three missense mutations (p.R402Q; p.S558W; p.K748E), four truncating mutations (p.Y530X; p.R656X; c.806delC; c.1620delC), one in-frame deletion (c.2020_2022delGAG) and the first reported splice site mutation (c.1935+3A>C). A recurrent mutation (p.R656X) was detected in three independent families. We did not find any evidence for phenotype-genotype correlations between type and position of mutations and clinical features. In addition to the well-established phenotypic features of AAS, other clinical features are also reported and discussed.
Resumo:
Since red alleles (R) of the genes that control grain colour are important for the improvement of preharvest sprouting resistance in wheat and there are three independently inherited loci, on chromosomes 3A, 3B and 3D of hexaploid wheat, it is possible to vary the dosage of dominant alleles in a breeding program. The objective of this work was to evaluate the dosage effect of R genes on preharvest sprouting, in a single seed descent population, named TRL, derived from the cross between Timgalen, white-grained wheat, and RL 4137, red-grained wheat. The study was carried out using sprouting data in ripe ears obtained under artificial conditions in a rainfall simulator over three years. According to the results there is a significant effect on preharvest sprouting provided by colour and a weaker effect of increasing R dosage. However, the significant residual genotypic variation between red lines and all lines (reds and whites) at 0.1% level showed that preharvest sprouting was also controlled by other genes. There are no significant correlations between sprouting and date of ripeness or between ripeness, R dosage and colour intensity.
Resumo:
Intrathymic T-cell maturation critically depends on the selective expansion of thymocytes expressing a functionally rearranged T-cell receptor (TCR) beta chain. In addition, TCR-independent signals also contribute to normal T-cell development. It is unclear whether and how signals from the 2 types of pathways are integrated. Here, we show that T-cell factor-1 (TCF-1), a nuclear effector of the canonical wingless/int (wnt)/catenin signaling pathway, ensures the survival of proliferating, pre-TCR(+) thymocytes. The survival of pre-TCR(+) thymocytes requires the presence of the N-terminal catenin-binding domain in TCF-1. This domain can bind the transcriptional coactivator beta-catenin and may also bind gamma-catenin (plakoglobin). However, in the absence of gamma-catenin, T-cell development is normal, supporting a role for beta-catenin. Signaling competent beta-catenin is present prior to and thus arises independently from pre-TCR signaling and does not substantially increase on pre-TCR signaling. In contrast, pre-TCR signaling significantly induces TCF-1 expression. This coincides with the activation of a wnt/catenin/TCF reporter transgene in vivo. Collectively, these data suggest that efficient TCF-dependent transcription requires that pre-TCR signaling induces TCF-1 expression, whereas wnt signals may provide the coactivator such as beta-catenin. The 2 pathways thus have to cooperate to ensure thymocyte survival at the pre-TCR stage.
Resumo:
Purpose. We describe an atypical case of a patient with Coats disease that re-emerged after 30 years, illustrating a previously poorly understood long-term evolution of the disease. Methods. A 20-year-old man consulted for visual acuity (VA) decrease in the left eye (LE) to 0.3. Fundus examination revealed an exudative lesion with telangiectasias in the superior peripheral retina compatible with the diagnosis of Coats disease. Results. The patient was treated with cryotherapy and argon laser. Visual acuity improved to 0.5 and remained stable during a 1-year follow-up. The patient did not seek further clinical follow-up. Thirty years later, he returned complaining of a progressive VA decrease in the LE. Snellen VA was measured to counting fingers. Fundus examination revealed stage 3A Coats disease with macular exudation and a serous retinal detachment in the inferior quadrants requiring the placement of an encircling band, external drainage, and cryotherapy of the vascular lesions. After 10 additional sessions of argon laser on the vascular malformations, exudation regressed further and best-corrected VA increased to 0.1 at the end of the follow-up period. Conclusions. Coats disease must be considered as a chronic disease, which necessitates a very long-term follow-up even in the absence of subjective visual loss. The disease can reawaken and recur with force in previously unaffected areas of the retina several decades later. The gold standard treatment consists of cryotherapy and argon laser. However, in cases of very important retinal exudation, surgical management with subretinal drainage may be necessary.
Resumo:
The TNF family ligand ectodysplasin A (EDA) regulates the induction, morphogenesis and/or maintenance of skin-derived structures such as teeth, hair, sweat glands and several other glands. Deficiencies in the EDA - EDA receptor (EDAR) signalling pathway cause hypohidrotic ectodermal dysplasia (HED). This syndrome is characterized by the absence or malformation of several skin-derived appendages resulting in hypotrychosis, hypodontia, heat-intolerance, dry skin and dry eyes, susceptibility to airways infections and crusting of various secretions. The EDA-EDAR system is an important effector of canonical Wnt signalling in developing skin appendages. It functions by stimulating NF-κB-mediated transcription of effectors or inhibitors of the Wnt, Sonic hedgehog (SHH), fibroblast growth factor (FGF) and transforming growth factor beta (TGFβ) pathways that regulate interactions within or between epithelial and mesenchymal cells and tissues. In animal models of Eda-deficiency, soluble EDAR agonists can precisely correct clinically relevant symptoms with low side effects even at high agonist doses, indicating that efficient negative feedback signals occur in treated tissues. Hijacking of the placental antibody transport system can help deliver active molecules to developing foetuses in a timely manner. EDAR agonists may serve to treat certain forms of ectodermal dysplasia.
Resumo:
OBJECTIVE: Our aim was to evaluate a fluorescence-based enhanced-reality system to assess intestinal viability in a laparoscopic mesenteric ischemia model. MATERIALS AND METHODS: A small bowel loop was exposed, and 3 to 4 mesenteric vessels were clipped in 6 pigs. Indocyanine green (ICG) was administered intravenously 15 minutes later. The bowel was illuminated with an incoherent light source laparoscope (D-light-P, KarlStorz). The ICG fluorescence signal was analyzed with Ad Hoc imaging software (VR-RENDER), which provides a digital perfusion cartography that was superimposed to the intraoperative laparoscopic image [augmented reality (AR) synthesis]. Five regions of interest (ROIs) were marked under AR guidance (1, 2a-2b, 3a-3b corresponding to the ischemic, marginal, and vascularized zones, respectively). One hour later, capillary blood samples were obtained by puncturing the bowel serosa at the identified ROIs and lactates were measured using the EDGE analyzer. A surgical biopsy of each intestinal ROI was sent for mitochondrial respiratory rate assessment and for metabolites quantification. RESULTS: Mean capillary lactate levels were 3.98 (SD = 1.91) versus 1.05 (SD = 0.46) versus 0.74 (SD = 0.34) mmol/L at ROI 1 versus 2a-2b (P = 0.0001) versus 3a-3b (P = 0.0001), respectively. Mean maximal mitochondrial respiratory rate was 104.4 (±21.58) pmolO2/second/mg at the ROI 1 versus 191.1 ± 14.48 (2b, P = 0.03) versus 180.4 ± 16.71 (3a, P = 0.02) versus 199.2 ± 25.21 (3b, P = 0.02). Alanine, choline, ethanolamine, glucose, lactate, myoinositol, phosphocholine, sylloinositol, and valine showed statistically significant different concentrations between ischemic and nonischemic segments. CONCLUSIONS: Fluorescence-based AR may effectively detect the boundary between the ischemic and the vascularized zones in this experimental model.
Resumo:
Résumé L'influence des hormones reproductives sur le développement du cancer du sein a été établie au travers de nombreuse études épidémiologiques. Nous avons précédemment démontré que le gène Wnt-4 est un médiateur essentiel de la progestérone dans le développement lobulo-alvéolaire de l'épithélium mammaire. De plus, le rôle de la voie de signalisation Wnt dans la tumorigénèse de la glande mammaire mutine est largement établi. Pour comprendre sa fonction dans le cancer du sein, nous avons activée cette voie en surexprimant le gène Wnt-1 dans des cellules épithéliales primaires de sein, au moyen d'un rétrovirus. Ceci a conduit à la transformation oncogénique de ces cellules et à l'obtention d'un modèle de carcinogénèse du sein dénommé Wnt-1 HMEC. L'analyse de l'expression des gènes induits par la surexpression de Wnt-1 dans ces cellules, a permis d'identifier les gènes BMP4 et 7. Alors que des analyses de RT-PCR ont montré leur forte expression dans les cellules Wnt-1-HMECs, la présence d'une grande quantité de la protéine BMP7 a été constatée dans les tumeurs dérivées de ces cellules. L'importante phosphorylation des Smad 1, 5, S dans les Wnt-1 HMECs indique l'activation de la voie BMP, possiblement due à la stimulation ce celle-ci par BMP7. L'activation de la voie Wnt par la ß-Caténine, conduit à la transcription de BMP7, identifiant ainsi ce gène comme un gène cible de la voie canonique. La pertinence de nos observations a par ailleurs été confirmée par le fait que BMP7 est surexprimé dans les tumeurs de seins humains. Afin d'élucider la fonction de la voie BMP dans le sein, nous avons utilisé le modèle mutin. L'expression du gène BMP7 dans les souris transgéniques MMTV Wnt-1 s'est avérée élevée, démontrant qu'il est aussi un gène cible de la voie Wnt in-vivo. L'expression de l'ARN messager .codant pour la protéine BMP7 est induite lors du développement lobulo-alvéolaire, qui se fait sous l'influence de la progestérone et de Wnt-4. Ensemble, ces observations corroborent le fait qu'une stimulation avec de la progestérone suffit à induire la transcription du gène dans les 24h. Nos résultats coïncident d'autre part avec le fait que BMP7 est exprimé dans la couche myoépithéliale de l'épithélium où la voie Wnt est activée. L'analyse de souris reportrices de l'activité de la voie BMP, suggère une activation dans la couche luminale de l'épithélium durant tout le développement de la glande mammaire. Curieusement, cette même voie est active dans le mésenchyme lors de la mammogénèse embryonnaire. Finalement, nos analyses d'immunofluorescence démontrent la capacité de prolifération des cellules ayant activé BMP, ainsi que leur nette ségrégation d'avec les cellules exprimant le récepteur à la progestérone. Nos résultats démontrent que le gène BMP7 est un gène cible de la voie Wnt canonique dans le sein. Son expression dans la couche myoépitheliale est induite par Wnt-4, lui-même sécrété par les cellules luminales sensibles à la progestérone. La sécrétion de la protéine BMP7 conduit finalement à l'activation de la voie BMP dans les cellules négatives pour le récepteur à la progestérone. Abstract Epidemiological studies highlight the repetitive exposure to circulating progesterone as a major risk in the development of breast cancer. Work in our laboratory showed that Wnt-4 is an essential mediator of progesterone-driven side-branch formation, while Wnt signaling has long been established as strongly oncogenic in the mouse mammary gland. To address the role of Wnt in breast tumorigenesis we activated the pathway in primary human breast epithelial cells by means of refroviral Wnt-1 expression. This resulted in a Wnt1-induced breast carcinogenesis model, being referred to as Wnt-1-HMECs. Gene expression profiling revealed the Bone Morphogenetic Protein 4 and 7 (BMP4 and 7) a mong the most upregulated gene by ectopic Wnt-1 expression in primary HMECs. RT-PCR analysis confirmed elevated BMP4 and 7 mRNA levels in Wnt-1-infected HMECs, as well as strong BMP7 expression in the tumors derived from these cells. Smad 1, 5, 8 phosphorylation was high in Wnt-1HMECs whereas below detection limit in primary HMECs suggesting that the increased expression of BMP-7 results in activation of downstream signaling. Ectopic expressíon of a stabilized form of ßcatenin in primary HMECs resulted in increased transcription of BMP-7 suggesting that it is a target of canonical Wnt signaling. The clinical relevance of our observations was confirmed by the finding of BMP7 being upregulated in human breast tumor samples. To elucidate the role of BMP ligands in the breast in-vivo, we made use of the mouse model. Expression of the BMP7 gene was found to be increased in MMTV-Wnt-1 transgenic animals, suggesting that BMP7 may also be a Wnt 1 target gene in vivo. Expression of BMP7 was upregulated in mid-pregnancy which coincides with progesterone/Wnt induced side branching. BMP7 was induced within 24 hours by progesterone. Consistent with it being a target of canonical Wnt signaling, we demonstrated preferential expression of this ligand in the myoepithelial cells, the target cells of Wnt signals. In-vivo analysis of BMP signaling using a reporter mouse revealed the activation of the pathway in the luminal layer of the epithelium throughout postnatal development. Interestingly, during embryonic mammogenesis the pathway was found to be active in the mesenchyme. Immunofluorescence studies demonstrated that cells with BMP activity can proliferate. They also revealed a clear segregation between progesterone receptor positive cells and cells with active BMP signaling. Together our observations suggest that BMP-7 is a canonical Wnt signaling target both in HMECs and in the mouse mammary gland in-vivo. It is expressed in the myoepithelium possibly in response to Wnt-4, which is secreted by steroid receptor positive cells in response to progesterone. BMP-7 in turn may impinge on lumina) epithelial cells and activate BMP signaling in PR negative cells.
Resumo:
Cyclooxygenase-derived prostaglandin E(2) (PGE(2)) is the predominant prostanoid found in most colorectal cancers (CRC) and is known to promote colon carcinoma growth and invasion. However, the key downstream signaling pathways necessary for PGE(2)-induced intestinal carcinogenesis are unclear. Here we report that PGE(2) indirectly transactivates PPARdelta through PI3K/Akt signaling, which promotes cell survival and intestinal adenoma formation. We also found that PGE(2) treatment of Apc(min) mice dramatically increased intestinal adenoma burden, which was negated in Apc(min) mice lacking PPARdelta. We demonstrate that PPARdelta is a focal point of crosstalk between the prostaglandin and Wnt signaling pathways which results in a shift from cell death to cell survival, leading to increased tumor growth.
Resumo:
Medulloblastoma is the most frequent malignant paediatric brain tumour. The activation of the Wnt/beta-catenin pathway occurs in 10-15% of medulloblastomas and has been recently described as a marker for favourable patient outcome. We report a series of 72 paediatric medulloblastomas evaluated for beta-catenin protein expression, CTNNB1 mutations, and comparative genomic hybridization. Gene expression profiles were also available in a subset of 40 cases. Immunostaining of beta-catenin showed extensive nuclear staining (>50% of the tumour cells) in six cases and focal nuclear staining (<10% of cells) in three cases. The other cases either exhibited a signal strictly limited to the cytoplasm (58 cases) or were negative (five cases). CTNNB1 mutations were detected in all beta-catenin extensively nucleopositive cases. The expression profiles of these cases documented strong activation of the Wnt/beta-catenin pathway. Remarkably, five out of these six tumours showed a complete loss of chromosome 6. In contrast, cases with focal nuclear beta-catenin staining, as well as tumours with negative or cytoplasmic staining, never demonstrated CTNNB1 mutation, Wnt/beta-catenin pathway activation or chromosome 6 loss. Patients with extensive nuclear staining were significantly older at diagnosis and were in continuous complete remission after a mean follow-up of 75.7 months (range 27.5-121.2 months) from diagnosis. All three patients with focal nuclear staining of beta-catenin died within 36 months from diagnosis. Altogether, these data confirm and extend previous observations that CTNNB1-mutated tumours represent a distinct molecular subgroup of medulloblastomas with favourable outcome, indicating that therapy de-escalation should be considered. International consensus on the definition criteria of this distinct medulloblastoma subgroup should be achieved.
Resumo:
Differences in efficacy and safety of drugs among patients are a recognized problem in pharmacotherapy. The reasons are multifactorial and, therefore, the choice of a drug and its dosage for a particular patient based on different clinical and genetic factors is suggested to improve the clinical outcome. Four drugs are currently used for the treatment of Alzheimer's disease: three acetylcholinesterase inhibitors (donepezil, galantamine, rivastigmine) and the N-methyl-D-aspartate-antagonist memantine. For these drugs, a high interindividual variability in plasma levels was observed, which might influence the response to treatment. The main objective of this thesis was to provide a better understanding of clinical and genetic factors affecting the plasma levels of antidementia drugs. Furthermore, the relationship between plasma levels, genetic variations and side effects was assessed. For this purpose, a pharmacogenetic study was conducted including 300 patients from a naturalistic clinical setting. Analytical methods for the simultaneous measurement of antidementia drugs in plasma have been developed and validated using liquid chromatography methods coupled with mass spectrometry detection. Presently, these methods are used in the therapeutic drug monitoring service of our laboratory. The routine use of therapeutic drug monitoring for antidementia drugs cannot yet be recommended with the available data, but it may be beneficial for some patients in special clinical cases such as insufficient treatment response, side effects or drug interactions. Donepezil and galantamine are extensively metabolized by the liver enzymes cytochromes P450 (CYP) 2D6 and 3A and are substrates of the drug transporter P-glycoprotein. The relationship of variations in genes affecting the activity of these metabolic enzymes and drug transporter (CYP2D6, CYP3A, POR, NR1I2, ABCB1) with donepezil and galantamine plasma levels was investigated. The CYP2D6 genotype appeared to be the major genetic factor involved in the pharmacokinetics of these two drugs. Thus, CYP2D6 poor metabolizers demonstrated significantly higher drug plasma levels than extensive metabolizers. Additionally, in the donepezil study population, the frequency of side effects was significantly increased in poor metabolizers. Lower donepezil plasma levels were observed in ultra rapid metabolizers, which might expose those patients to the risk of non-response. Memantine is mainly eliminated unchanged by the kidney, with implication of tubular secretion by renal transporters. A population pharmacokinetic model was developed to quantify the effects of clinical factors and genetic variations in renal cation transporters (SLC22A1/2/5, SLC47A1, ABCB1), and nuclear receptors (NR1I2, NR1I3, PPARG) involved in transporter expression, on memantine plasma levels. In addition to the renal function and gender, a genetic variation in the nuclear receptor Pregnane-X-Receptor (NR1I2) significantly affected memantine elimination. These findings suggest that an individualized therapy approach for antidementia drugs, taking into account clinical characteristics and genetic background of a patient, might increase efficacy and safety of the treatment. - Les différences interindividuelles dans l'efficacité et la tolérance des médicaments sont un problème connu en pharmacothérapie. Les raisons sont multiples, et le choix du médicament et de la dose, basé sur des facteurs cliniques et génétiques spécifiques au patient, peut contribuer à améliorer la réponse clinique. Quatre médicaments sont couramment utilisés dans le traitement de la maladie d'Alzheimer : trois inhibiteurs de l'acétylcholinestérase (donépézil, galantamine, rivastigmine) et un antagoniste du récepteur N-méthyl-D-aspartate, la mémantine. Une forte variabilité interindividuelle dans les taux plasmatiques de ces quatre composés a été observée, ce qui pourrait influencer la réponse au traitement. L'objectif principal de ce travail de thèse est de mieux comprendre les facteurs cliniques et génétiques influençant les taux des médicaments pro-cognitifs. En outre, des associations entre les taux, la variabilité génétique et les effets secondaires ont été recherchées. Dans ce but, 300 patients sous traitement avec un médicament pro-cognitif ont été recrutés pour une étude pharmacogénétique. Des méthodes de dosage simultané de médicaments pro-cognitifs par chromatographie liquide couplée à la spectrométrie de masse ont été développées et validées. Ces méthodes sont actuellement utilisées dans le service de suivi thérapeutique de notre unité. Malgré le fait qu'un suivi des taux sanguins des pro-cognitifs ne puisse pas encore être recommandé en routine, un dosage peut être utile dans des cas cliniques spécifiques, comme une réponse insuffisante, une intolérance ou une interaction médicamenteuse. Le donépézil et la galantamine sont fortement métabolisés par les cytochromes P450 (CYP) 2D6 et 3A, et sont également substrats du transporteur P-glycoprotéine. Les associations entre les polymorphismes génétiques de ces enzymes, cofacteur, récepteur nucléaire et transporteur (CYP2D6, CYP3A, POR, NR1I2, ABCB1) et les taux de donépézil et de galantamine ont été étudiées. Le génotype du CYP2D6 a été montré comme le facteur génétique majeur impliqué dans la pharmacocinétique de ces deux médicaments. Ainsi, les métaboliseurs déficients du CYP2D6 ont démontré des taux plasmatiques significativement plus élevés comparé aux bons métaboliseurs. De plus, dans la population traitée avec le donépézil, la fréquence des effets secondaires était plus élevée chez les métaboliseurs déficients. Des taux plasmatiques bas ont été mesurés chez les métaboliseurs ultra-rapides traités avec le donépézil, ce qui pourrait être un facteur de risque à une non-réponse au traitement. La mémantine est principalement éliminée sous forme inchangée par les reins, et partiellement par sécrétion tubulaire grâce à des transporteurs rénaux. Un modèle de cinétique de population a été développé pour quantifier les effets des différents facteurs cliniques et de la variabilité génétique des transporteurs rénaux (SLC22A1/2/5, SLC47A1, ABCB1) et des récepteurs nucléaires (NR1I2, NR1I3, PPARG, impliqués dans l'expression des transporteurs) sur les taux plasmatiques de mémantine. En plus de la fonction rénale et du genre, une variation génétique dans le récepteur nucléaire Pregnane-X-Receptor (NR1I2) a montré une influence significative sur l'élimination de la mémantine. Ces résultats suggèrent qu'une approche thérapeutique individualisée, prenant en compte des facteurs cliniques et génétiques du patient, pourrait améliorer l'efficacité et la sécurité du traitement pro-cognitif.
Resumo:
This report, entitled Iowa Highway Research and Development Activities FY 2015, is submitted in compliance with Iowa Code section 310.36 and 312.3A, which direct the submission of a report of the Secondary Road Research Fund and the Street Research Fund, respectively. It is a report of the status of research and development projects in process on June 30, 2015. It is also a report on projects completed during the fiscal year beginning July 1, 2014 and ending June 30, 2015. Detailed information on each of the research and development projects mentioned in this report is available from the office of Research and Analytics, Performance and Technology Division, Iowa Department of Transportation. All approved reports are also online for viewing at http://www.iowadot.gov/research/pdf/IHRBAnnualReport.pdf.
Resumo:
Tenascin-C is an adhesion-modulating extracellular matrix molecule that is highly expressed in tumor stroma and stimulates tumor cell proliferation. Adhesion of T98G glioblastoma cells to a fibronectin substratum is inhibited by tenascin-C. To address the mechanism of action, we performed a RNA expression analysis of T89G cells grown in the presence or absence of tenascin-C and found that tenascin-C down-regulates tropomyosin-1. Upon overexpression of tropomyosin-1, cell spreading on a fibronectin/tenascin-C substratum was restored, indicating that tenascin-C destabilizes actin stress fibers through down-regulation of tropomyosin-1. Tenascin-C also increased the expression of the endothelin receptor type A and stimulated the corresponding mitogen-activated protein kinase signaling pathway, which triggers extracellular signal-regulated kinase 1/2 phosphorylation and c-Fos expression. Tenascin-C additionally caused down-regulation of the Wnt inhibitor Dickkopf 1. In consequence, Wnt signaling was enhanced through stabilization of beta-catenin and stimulated the expression of the beta-catenin target Id2. Finally, our in vivo data derived from astrocytoma tissue arrays link increased tenascin-C and Id2 expression with high malignancy. Because increased endothelin and Wnt signaling, as well as reduced tropomyosin-1 expression, are closely linked to transformation and tumorigenesis, we suggest that tenascin-C specifically modulates these signaling pathways to enhance proliferation of glioma cells.