618 resultados para WLT Estimators
Resumo:
In aircraft components maintenance shops, components are distributed amongst repair groups and their respective technicians based on the type of repair, on the technicians skills and workload, and on the customer required dates. This distribution planning is typically done in an empirical manner based on the group leader’s past experience. Such a procedure does not provide any performance guarantees, leading frequently to undesirable delays on the delivery of the aircraft components. Among others, a fundamental challenge faced by the group leaders is to decide how to distribute the components that arrive without customer required dates. This paper addresses the problems of prioritizing the randomly arriving of aircraft components (with or without pre-assigned customer required dates) and of optimally distributing them amongst the technicians of the repair groups. We proposed a formula for prioritizing the list of repairs, pointing out the importance of selecting good estimators for the interarrival times between repair requests, the turn-around-times and the man hours for repair. In addition, a model for the assignment and scheduling problem is designed and a preliminary algorithm along with a numerical illustration is presented.
Resumo:
A necessidade de conhecer uma população impulsiona um processo de recolha e análise de informação. Usualmente é muito difícil ou impossível estudar a totalidade da população, daí a importância do estudo com recurso a amostras. Conceber um estudo por amostragem é um processo complexo, desde antes da recolha dos dados até a fase de análise dos mesmos. Na maior parte dos estudos utilizam-se combinações de vários métodos probabilísticos de amostragem para seleção de uma amostra, que se pretende representativa da população, denominado delineamento de amostragem complexo. O conhecimento dos erros de amostragem é necessário à correta interpretação dos resultados de inquéritos e à avaliação dos seus planos de amostragem. Em amostras complexas, têm sido usadas aproximações ajustadas à natureza complexa do plano da amostra para a estimação da variância, sendo as mais utilizadas: o método de linearização Taylor e as técnicas de reamostragem e replicação. O principal objetivo deste trabalho é avaliar o desempenho dos estimadores usuais da variância em amostras complexas. Inspirado num conjunto de dados reais foram geradas três populações com características distintas, das quais foram sorteadas amostras com diferentes delineamentos de amostragem, na expectativa de obter alguma indicação sobre em que situações se deve optar por cada um dos estimadores da variância. Com base nos resultados obtidos, podemos concluir que o desempenho dos estimadores da variância da média amostral de Taylor, Jacknife e Bootstrap varia com o tipo de delineamento e população. De um modo geral, o estimador de Bootstrap é o menos preciso e em delineamentos estratificados os estimadores de Taylor e Jackknife fornecem os mesmos resultados; Evaluation of variance estimation methods in complex samples ABSTRACT: The need to know a population drives a process of collecting and analyzing information. Usually is to hard or even impossible to study the whole population, hence the importance of sampling. Framing a study by sampling is a complex process, from before the data collection until the data analysis. Many studies have used combinations of various probabilistic sampling methods for selecting a representative sample of the population, calling it complex sampling design. Knowledge of sampling errors is essential for correct interpretation of the survey results and evaluation of the sampling plans. In complex samples to estimate the variance has been approaches adjusted to the complex nature of the sample plane. The most common are: the linearization method of Taylor and techniques of resampling and replication. The main objective of this study is to evaluate the performance of usual estimators of the variance in complex samples. Inspired on real data we will generate three populations with distinct characteristics. From this populations will be drawn samples using different sampling designs. In the end we intend to get some lights about in which situations we should opt for each one of the variance estimators. Our results show that the performance of the variance estimators of sample mean Taylor, Jacknife and Bootstrap varies with the design and population. In general, the Bootstrap estimator is less precise and in stratified design Taylor and Jackknife estimators provide the same results.
Resumo:
We use a probing strategy to estimate the time dependent traffic intensity in an Mt/Gt/1 queue, where the arrival rate and the general service-time distribution change from one time interval to another, and derive statistical properties of the proposed estimator. We present a method to detect a switch from a stationary interval to another using a sequence of probes to improve the estimation. At the end, we compare our results with two estimators proposed in the literature for the M/G/1 queue.