957 resultados para Volatile signature
Resumo:
In the last three decades, the range of the Egyptian mongoose (Herpestes ichneumon) has increased in the Iberian Peninsula. A panel of microsatellites was used to confront the patterns of genetic diversity of the species with the scenario of its recent northward expansion in its Iberian range. Evidence of substructure and significant genetic differentiation within the studied population were recorded, with a central-northern subpopulation (CNorth) and a southern subpopulation (S). Northward range expansion was supported by the observed allelic frequencies, diversity parameters, and observed heterozygosity of the studied loci, with S showing a higher allelic diversity and a higher number of private alleles than CNorth. Patterns of isolation-by-distance and isolation-by-barrier as a result of the Tagus River were demonstrated, suggesting that the river acted as a semi-permeable barrier, possibly leading to genetic differentiation of the studied population. The observed individuals from CNorth in southern locations and individuals from S in central/northern areas might comprise evidence for long range dispersals across the studied range. A bottleneck event after population expansion was supported by a significant heterozygosity deficiency in CNorth, which is in agreement with a scenario of founder events occurring in recently colonized areas after the crossing of the Tagus River.
Resumo:
Wine aroma is an important characteristic and may be related to certain specific parameters, such as raw material and production process. The complexity of Merlot wine aroma was considered suitable for comprehensive two-dimensional gas chromatography (GCGC), as this technique offers superior performance when compared to one-dimensional gas chromatography (1D-GC). The profile of volatile compounds of Merlot wine was, for the first time, qualitatively analyzed by HS-SPME-GCxGC with a time-of-flight mass spectrometric detector (TOFMS), resulting in 179 compounds tentatively identified by comparison of experimental GCxGC retention indices and mass spectra with literature 1D-GC data and 155 compounds tentatively identified only by mass spectra comparison. A set of GCGC experimental retention indices was also, for the first time, presented for a specific inverse set of columns. Esters were present in higher number (94), followed by alcohols (80), ketones (29), acids (29), aldehydes (23), terpenes (23), lactones (16), furans (14), sulfur compounds (9), phenols (7), pyrroles (5), C13-norisoprenoids (3), and pyrans (2). GCxGC/TOFMS parameters were improved and optimal conditions were: a polar (polyethylene glycol)/medium polar (50% phenyl 50% dimethyl arylene siloxane) column set, oven temperature offset of 10ºC, 7 s as modulation period and 1.4 s of hot pulse duration. Co-elutions came up to 138 compounds in 1D and some of them were resolved in 2D. Among the coeluted compounds, thirty-three volatiles co-eluted in both 1D and 2D and their tentative identification was possible only due to spectral deconvolution. Some compounds that might have important contribution to aroma notes were included in these superimposed peaks. Structurally organized distribution of compounds in the 2D space was observed for esters, aldehydes and ketones, alcohols, thiols, lactones, acids and also inside subgroups, as occurred with esters and alcohols. The Fischer Ratio was useful for establishing the analytes responsible for the main differences between Merlot and non-Merlot wines. Differentiation among Merlot wines and wines of other grape varieties were mainly perceived through the following components: ethyl dodecanoate, 1-hexanol, ethyl nonanoate, ethyl hexanoate, ethyl decanoate, dehydro-2-methyl-3(2H)thiophenone, 3-methyl butanoic acid, ethyl tetradecanoate, methyl octanoate, 1,4 butanediol, and 6-methyloctan-1-ol.
Resumo:
2016
Resumo:
Background and Objectives: Carotid revascularization to prevent future vascular events is reasonable in patients with high-grade carotid stenosis. Currently, several biomarkers to predict carotid plaque development and progression have been investigated, among which microRNAs (miRs) are promising tools for the diagnosis of atherosclerosis. Methods and Results: A total of 49 participants were included in the study, divided into two main populations: Population 1 comprising symptomatic and asymptomatic inpatients, and Population 2 comprising asymptomatic outpatients. The study consisted of two main phases: a preliminary discovery phase and a validation phase, applying different techniques. MiR-profiles were performed on plasma and plaque tissue samples obtained from 4 symptomatic and 4 asymptomatic inpatients. MiRs emerging from profiling comparisons, i.e. miR-126-5p, miR-134-5p, miR-145-5p, miR-151a-5p, miR-34b, miR-451a, miR-720 and miR-1271-5p, were subjected to validation through RT-qPCR analysis in the total cohort of donors. Comparing asymptomatic and symptomatic inpatients, significant differences were reported in the expression levels of c-miRs for miR-126-5p and miR-1271-5p in blood, being more expressed in symptomatic subjects. In contrast, simultaneous evaluation of the selected miRs in plaque tissue samples did not confirm data obtained by the miR profiling, and no significant differences were observed. Using Receiver-Operating Characteristic (ROC) analysis, a circulating molecular signature (mir-126-5p, miR-1271-5p, albumin, C-reactive protein, and monocytes) was identified, allowing the distinction of the two groups in Population 1 (AUC = 0.795). Conclusions: Data emerging from this thesis suggest that c-miRs (i.e. miR-126-5p, miR-1271-5p) combined with selected haemato-biochemical parameters (albumin, C-reactive protein, and monocytes) produced a good molecular 'signature' to distinguish asymptomatic and symptomatic inpatients. C-miRs in blood do not necessarily reflect the expression levels of the same miRs in carotid plaque tissues since different mechanism can influence their expression.
Resumo:
L’olio di oliva è tra i prodotti alimentari principali della dieta mediterranea e possiede delle caratteristiche salutistiche, compositive e sensoriali peculiari. La qualità e la genuinità dell’olio di oliva vergine sono valutate sia mediante determinazioni analitiche chimiche e strumentali, sia attraverso l’analisi sensoriale. Quest’ultima, realizzata con il metodo del panel test, è tra i metodi ufficiali per la classificazione degli oli di oliva vergini nelle tre categorie commerciali extra vergine, vergine e lampante. Tuttavia, l’analisi sensoriale presenta dei limiti legati, in particolare, al numero elevato di campioni di olio da analizzare rispetto alle capacità di lavoro dei panel. Negli ultimi anni è aumentata, così, la necessità di sviluppare e validare metodi analitici strumentali che, pre-classificando gli oli in esame, siano di supporto al panel test e possano ridurre il numero di campioni da sottoporre ad analisi sensoriale. In questo elaborato di tesi sono state prese in considerazione due diverse tecniche analitiche, la gas cromatografica accoppiata alla spettrometria a mobilità ionica (HS-GC-IMS) e la flash gas cromatografia (FGC E-nose), entrambe impiegate per la valutazione della frazione volatile dell’olio di oliva, responsabile degli attributi olfattivi del prodotto. Utilizzando i risultati ottenuti applicando queste due tecniche, mediante analisi multivariata, è stato possibile stimare la categoria merceologica di ogni campione appartenente ad un set di 52 oli di oliva vergini, classificandoli con un determinato livello di probabilità. Entrambe le metodiche analitiche sono già state utilizzate e valutate in precedenti studi; con la sperimentazione effettuata nell’ambito di questa tesi è stato possibile confermare l’efficacia dei modelli di stima che possono essere impiegati con finalità di screening in supporto al panel test, nell’ottica di renderli sempre più robusti ed affidabili per la classificazione degli oli di oliva vergini.
Resumo:
Purified genomic DNA can be difficult to obtain from some plant species because of the presence of impurities such as polysaccharides, which are often co-extracted with DNA. In this study, we developed a fast, simple, and low-cost protocol for extracting DNA from plants containing high levels of secondary metabolites. This protocol does not require the use of volatile toxic reagents such as mercaptoethanol, chloroform, or phenol and allows the extraction of high-quality DNA from wild and cultivated tropical species.
Resumo:
Histological and histochemical observations support the hypothesis that collagen fibers can link to elastic fibers. However, the resulting organization of elastin and collagen type complexes and differences between these materials in terms of macromolecular orientation and frequencies of their chemical vibrational groups have not yet been solved. This study aimed to investigate the macromolecular organization of pure elastin, collagen type I and elastin-collagen complexes using polarized light DIC-microscopy. Additionally, differences and similarities between pure elastin and collagen bundles (CB) were investigated by Fourier transform-infrared (FT-IR) microspectroscopy. Although elastin exhibited a faint birefringence, the elastin-collagen complex aggregates formed in solution exhibited a deep birefringence and formation of an ordered-supramolecular complex typical of collagen chiral structure. The FT-IR study revealed elastin and CB peptide NH groups involved in different types of H-bonding. More energy is absorbed in the vibrational transitions corresponding to CH, CH2 and CH3 groups (probably associated with the hydrophobicity demonstrated by 8-anilino-1-naphtalene sulfonic acid sodium salt [ANS] fluorescence), and to νCN, δNH and ωCH2 groups of elastin compared to CB. It is assumed that the α-helix contribution to the pure elastin amide I profile is 46.8%, whereas that of the B-sheet is 20% and that unordered structures contribute to the remaining percentage. An FT-IR profile library reveals that the elastin signature within the 1360-1189cm(-1) spectral range resembles that of Conex-Toray aramid fibers.
Resumo:
Witches' broom disease (WBD), caused by the hemibiotrophic fungus Moniliophthora perniciosa, is one of the most devastating diseases of Theobroma cacao, the chocolate tree. In contrast to other hemibiotrophic interactions, the WBD biotrophic stage lasts for months and is responsible for the most distinctive symptoms of the disease, which comprise drastic morphological changes in the infected shoots. Here, we used the dual RNA-seq approach to simultaneously assess the transcriptomes of cacao and M. perniciosa during their peculiar biotrophic interaction. Infection with M. perniciosa triggers massive metabolic reprogramming in the diseased tissues. Although apparently vigorous, the infected shoots are energetically expensive structures characterized by the induction of ineffective defense responses and by a clear carbon deprivation signature. Remarkably, the infection culminates in the establishment of a senescence process in the host, which signals the end of the WBD biotrophic stage. We analyzed the pathogen's transcriptome in unprecedented detail and thereby characterized the fungal nutritional and infection strategies during WBD and identified putative virulence effectors. Interestingly, M. perniciosa biotrophic mycelia develop as long-term parasites that orchestrate changes in plant metabolism to increase the availability of soluble nutrients before plant death. Collectively, our results provide unique insight into an intriguing tropical disease and advance our understanding of the development of (hemi)biotrophic plant-pathogen interactions.
Resumo:
This study sought to analyse the behaviour of the average spinal posture using a novel investigative procedure in a maximal incremental effort test performed on a treadmill. Spine motion was collected via stereo-photogrammetric analysis in thirteen amateur athletes. At each time percentage of the gait cycle, the reconstructed spine points were projected onto the sagittal and frontal planes of the trunk. On each plane, a polynomial was fitted to the data, and the two-dimensional geometric curvature along the longitudinal axis of the trunk was calculated to quantify the geometric shape of the spine. The average posture presented at the gait cycle defined the spine Neutral Curve. This method enabled the lateral deviations, lordosis, and kyphosis of the spine to be quantified noninvasively and in detail. The similarity between each two volunteers was a maximum of 19% on the sagittal plane and 13% on the frontal (p<0.01). The data collected in this study can be considered preliminary evidence that there are subject-specific characteristics in spinal curvatures during running. Changes induced by increases in speed were not sufficient for the Neutral Curve to lose its individual characteristics, instead behaving like a postural signature. The data showed the descriptive capability of a new method to analyse spinal postures during locomotion; however, additional studies, and with larger sample sizes, are necessary for extracting more general information from this novel methodology.
Resumo:
Volatile compounds from green and roasted yerba mate were analyzed by gas chromatography/mass spectrometry and the flavor profile from yerba mate beverages was determined by descriptive quantitative analyses. The main compounds tentatively identified in green mate were linalool, alpha-terpineol and trans-linalool oxide and in roasted mate were (E,Z)-2,4-heptadienal isomers and 5-methylfurfural. Green mate infusion was qualified as having bitter taste and aroma as well as green grass aroma while roasted mate was defined as having a smooth, slightly burnt aroma. The relationship between the tentatively identified compounds and flavor must be determined by olfatometric analysis.
Resumo:
The copper and cadmium complexation properties in natural sediment suspensions of reservoirs of the Tietê River were studied using the solid membrane copper and cadmium ion-selective electrodes. The complexation and the average conditional stability constants were determined under equilibrium conditions at pH=6.00 ± 0.05 in a medium of 1.0 mol L-1 sodium nitrate, using the Scatchard method. The copper and cadmium electrodes presented Nernstian behavior from 1x10-6 to 1x10-3 mol L-1 of total metal concentration. Scatchard graphs suggest two classes of binding sites for both metals. A multivariate study was done to correlate the reservoirs and the variables: complexation properties, size, total organic carbon, volatile acid sulfide, E II and pH.
Resumo:
In this work, the volatile chromatographic profiles of roasted Arabica coffees, previously analyzed for their sensorial attributes, were explored by principal component analysis. The volatile extraction technique used was the solid phase microextraction. The correlation optimized warping algorithm was used to align the gas chromatographic profiles. Fifty four compounds were found to be related to the sensorial attributes investigated. The volatiles pyrrole, 1-methyl-pyrrole, cyclopentanone, dihydro-2-methyl-3-furanone, furfural, 2-ethyl-5-methyl-pyrazine, 2-etenyl-n-methyl-pyrazine, 5-methyl-2-propionyl-furan compounds were important for the differentiation of coffee beverage according to the flavour, cleanliness and overall quality. Two figures of merit, sensitivity and specificity (or selectivity), were used to interpret the sensory attributes studied.
Resumo:
This paper discusses the historical and methodological fundaments of the dynamics and quantification of acid volatile sulfides (AVS) and simultaneously extracted metals (SEM) in aquatic sediments. It also discusses the SEM/AVS relationship, which involves several controversial aspects such as sulfide stability, sulfide-organic matter interaction, and the inability to predict the toxicity of organic compounds in the environment. This relationship is an important tool for the inference of metal bioavailability. The use of ecotoxicological tests with target organisms regulated by international standards is also a relevant aspect.
Resumo:
Plastic packaging materials intended for use in food packaging is an area of great interest from the scientific and economic point of view due to the irreversible internationalization and globalization process of food products. Nevertheless, a debate related to food safety aspects has emerged within the scientific community. Therefore, the development of analytical methods that allow identifying and quantifying chemical substances of toxicological potential in the packaging is considered essential. This article focuses on the main analytical methods, including validation parameters, as well as extraction and quantification techniques for determination of volatile organic compounds from food packaging materials.