905 resultados para Video Surveillance System
Resumo:
"19 May 1983."
Resumo:
Playing video games is an activity that takes up an increasing amount of children’s and adolescent’s spare time. While some previous studies have highlighted the negative aspects of video games, little research has been carried out on the linguistic learning opportunities that video games present. This study primarily investigates if Swedish second language learners of English can increase their vocabulary proficiency in English with the use of video games. In order to answer the research questions, two quantitative data elicitation methods are used: a questionnaire which aims to gather attitudinal and behavioral data, and a Vocabulary Levels Test which elicits data about the participants’ receptive vocabulary proficiency. The participants consist of 25 students at an upper secondary school in Stockholm. The results show that participants who played video games scored higher on the Vocabulary Levels Test, indicating a higher receptive vocabulary proficiency. Furthermore, the results show that participants who played moderate to frequent amounts of time performed better in the Vocabulary Levels Test than infrequent players. The results also show that video games emphasizing co-operation and communication are preferable to use for vocabulary acquisition. Additionally, the study discusses if video games could be integrated into the Swedish upper secondary school system.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-04
Resumo:
Thesis (Master's)--University of Washington, 2016-06
Resumo:
Background: Flexible video bronchoscopes, in particular the Olympus BF Type 3C160, are commonly used in pediatric respiratory medicine. There is no data on the magnification and distortion effects of these bronchoscopes yet important clinical decisions are made from the images. The aim of this study was to systematically describe the magnification and distortion of flexible bronchoscope images taken at various distances from the object. Methods: Using images of known objects and processing these by digital video and computer programs both magnification and distortion scales were derived. Results: Magnification changes as a linear function between 100 mm ( x 1) and 10 mm ( x 9.55) and then as an exponential function between 10 mm and 3 mm ( x 40) from the object. Magnification depends on the axis of orientation of the object to the optic axis or geometrical axis of the bronchoscope. Magnification also varies across the field of view with the central magnification being 39% greater than at the periphery of the field of view at 15 mm from the object. However, in the paediatric situation the diameter of the orifices is usually less than 10 mm and thus this limits the exposure to these peripheral limits of magnification reduction. Intraclass correlations for measurements and repeatability studies between instruments are very high, r = 0.96. Distortion occurs as both barrel and geometric types but both types are heterogeneous across the field of view. Distortion of geometric type ranges up to 30% at 3 mm from the object but may be as low as 5% depending on the position of the object in relation to the optic axis. Conclusion: We conclude that the optimal working distance range is between 40 and 10 mm from the object. However the clinician should be cognisant of both variations in magnification and distortion in clinical judgements.
Resumo:
Purpose: This pilot study explored the feasibility and effectiveness of an Internet-based telerehabilitation application for the assessment of motor speech disorders in adults with acquired neurological impairment. Method: Using a counterbalanced, repeated measures research design, 2 speech-language pathologists assessed 19 speakers with dysarthria on a battery of perceptual assessments. The assessments included a 19-item version of the Frenchay Dysarthria Assessment (FDA; P. Enderby, 1983), the Assessment of Intelligibility of Dysarthric Speech (K. M. Yorkston & D. R. Beukelman, 1981), perceptual analysis of a speech sample, and an overall rating of severity of the dysarthria. One assessment was conducted in the traditional face-to-face manner, whereas the other assessment was conducted using an online, custom-built telerehabilitation application. This application enabled real-time videoconferencing at 128 kb/s and the transfer of store-and-forward audio and video data between the speaker and speech-language pathologist sites. The assessment methods were compared using the J.M.Bland and D.G.Altman (1986, 1999) limits-of-agreement method and percentage level of agreement between the 2 methods. Results: Measurements of severity of dysarthria, percentage intelligibility in sentences, and most perceptual ratings made in the telerehabilitation environment were found to fall within the clinically acceptable criteria. However, several ratings on the FDA were not comparable between the environments, and explanations for these results were explored. Conclusions: The online assessment of motor speech disorders using an Internet-based telerehabilitation system is feasible. This study suggests that with additional refinement of the technology and assessment protocols, reliable assessment of motor speech disorders over the Internet is possible. Future research methods are outlined.
Resumo:
Regular and systematic monitoring of drug markets provides the basis for evidence-based policy. In Australia, trends in ecstasy and related drug (ERD) markets have been monitored in selected jurisdictions since 2000 and nationally since 2003, by the Party Drugs Initiative (PDI). The PDI maximises the validity of conclusions by triangulating information from (a) interviews with regular ecstasy users (REU), (b) interviews with key experts and (c) indicator data. There is currently no other system in Australia for monitoring these markets systematically; however, the value of the PDI has been constrained by the quality of available data. Difficulties in recruiting and interviewing appropriate consumers (REU) and key experts have been experienced, but largely overcome. Limitations of available indicator data from both health and law enforcement continue to present challenges and there remains considerable scope for enhancing existing routine data collection systems, to facilitate monitoring of ERD markets. With an expanding market for ecstasy and related drugs in Australia, and in the context of indicator data that continue to be limited in scope and detail, there is a strong argument for the continued collection of annual, comparable data from a sentinel group of REU, such as those recruited for the PDI.
Resumo:
We have used a telerehabilitation system (eREHAB) to remotely assess acquired language disorders via the Internet. The system was used to establish a 128 kbit/s videoconference between two sites and allowed a remote language assessment to be conducted using the standardized Boston Diagnostic Aphasia Examination (BDAE). The system had the capacity to display text and images, and could play pre-recorded instructions to the participant via various built-in tools. A touch screen allowed tasks involving picture identification to be completed easily. Eighteen participants with a diagnosis of an acquired language disorder were simultaneously assessed using the eREHAB system, and in the traditional face-to-face manner by two speech pathologists. There was very high agreement between the two assessors, with weighted kappa scores of 0.8–1.0 for 88% of the sub-tests of the BDAE. There was also high agreement (80–100%) and high kappa scores (0.67–0.90) between assessors on the six rating scales relating to language characteristics. The agreement between the two assessors for the diagnosis of the type of aphasia was 83%. Limitations of the system related mainly to problems inherent in IP videoconferencing. The inability to maintain the preferred speed of 128 kbit/s for the duration of the videoconference and the resultant increase in video and audio breakup and latency affected the clinician’s ability to administer the BDAE with the same ease and accuracy as in face-to-face administration. These difficulties were exacerbated when participants presented with a moderate to severe language disorder, auditory comprehension deficits or significant hearing loss. Despite these limitations, a valid assessment of language disorder was found to be feasible via this telerehabilitation application.
Resumo:
With rapid advances in video processing technologies and ever fast increments in network bandwidth, the popularity of video content publishing and sharing has made similarity search an indispensable operation to retrieve videos of user interests. The video similarity is usually measured by the percentage of similar frames shared by two video sequences, and each frame is typically represented as a high-dimensional feature vector. Unfortunately, high complexity of video content has posed the following major challenges for fast retrieval: (a) effective and compact video representations, (b) efficient similarity measurements, and (c) efficient indexing on the compact representations. In this paper, we propose a number of methods to achieve fast similarity search for very large video database. First, each video sequence is summarized into a small number of clusters, each of which contains similar frames and is represented by a novel compact model called Video Triplet (ViTri). ViTri models a cluster as a tightly bounded hypersphere described by its position, radius, and density. The ViTri similarity is measured by the volume of intersection between two hyperspheres multiplying the minimal density, i.e., the estimated number of similar frames shared by two clusters. The total number of similar frames is then estimated to derive the overall similarity between two video sequences. Hence the time complexity of video similarity measure can be reduced greatly. To further reduce the number of similarity computations on ViTris, we introduce a new one dimensional transformation technique which rotates and shifts the original axis system using PCA in such a way that the original inter-distance between two high-dimensional vectors can be maximally retained after mapping. An efficient B+-tree is then built on the transformed one dimensional values of ViTris' positions. Such a transformation enables B+-tree to achieve its optimal performance by quickly filtering a large portion of non-similar ViTris. Our extensive experiments on real large video datasets prove the effectiveness of our proposals that outperform existing methods significantly.
Resumo:
This work has, as its objective, the development of non-invasive and low-cost systems for monitoring and automatic diagnosing specific neonatal diseases by means of the analysis of suitable video signals. We focus on monitoring infants potentially at risk of diseases characterized by the presence or absence of rhythmic movements of one or more body parts. Seizures and respiratory diseases are specifically considered, but the approach is general. Seizures are defined as sudden neurological and behavioural alterations. They are age-dependent phenomena and the most common sign of central nervous system dysfunction. Neonatal seizures have onset within the 28th day of life in newborns at term and within the 44th week of conceptional age in preterm infants. Their main causes are hypoxic-ischaemic encephalopathy, intracranial haemorrhage, and sepsis. Studies indicate an incidence rate of neonatal seizures of 0.2% live births, 1.1% for preterm neonates, and 1.3% for infants weighing less than 2500 g at birth. Neonatal seizures can be classified into four main categories: clonic, tonic, myoclonic, and subtle. Seizures in newborns have to be promptly and accurately recognized in order to establish timely treatments that could avoid an increase of the underlying brain damage. Respiratory diseases related to the occurrence of apnoea episodes may be caused by cerebrovascular events. Among the wide range of causes of apnoea, besides seizures, a relevant one is Congenital Central Hypoventilation Syndrome (CCHS) \cite{Healy}. With a reported prevalence of 1 in 200,000 live births, CCHS, formerly known as Ondine's curse, is a rare life-threatening disorder characterized by a failure of the automatic control of breathing, caused by mutations in a gene classified as PHOX2B. CCHS manifests itself, in the neonatal period, with episodes of cyanosis or apnoea, especially during quiet sleep. The reported mortality rates range from 8% to 38% of newborn with genetically confirmed CCHS. Nowadays, CCHS is considered a disorder of autonomic regulation, with related risk of sudden infant death syndrome (SIDS). Currently, the standard method of diagnosis, for both diseases, is based on polysomnography, a set of sensors such as ElectroEncephaloGram (EEG) sensors, ElectroMyoGraphy (EMG) sensors, ElectroCardioGraphy (ECG) sensors, elastic belt sensors, pulse-oximeter and nasal flow-meters. This monitoring system is very expensive, time-consuming, moderately invasive and requires particularly skilled medical personnel, not always available in a Neonatal Intensive Care Unit (NICU). Therefore, automatic, real-time and non-invasive monitoring equipments able to reliably recognize these diseases would be of significant value in the NICU. A very appealing monitoring tool to automatically detect neonatal seizures or breathing disorders may be based on acquiring, through a network of sensors, e.g., a set of video cameras, the movements of the newborn's body (e.g., limbs, chest) and properly processing the relevant signals. An automatic multi-sensor system could be used to permanently monitor every patient in the NICU or specific patients at home. Furthermore, a wire-free technique may be more user-friendly and highly desirable when used with infants, in particular with newborns. This work has focused on a reliable method to estimate the periodicity in pathological movements based on the use of the Maximum Likelihood (ML) criterion. In particular, average differential luminance signals from multiple Red, Green and Blue (RGB) cameras or depth-sensor devices are extracted and the presence or absence of a significant periodicity is analysed in order to detect possible pathological conditions. The efficacy of this monitoring system has been measured on the basis of video recordings provided by the Department of Neurosciences of the University of Parma. Concerning clonic seizures, a kinematic analysis was performed to establish a relationship between neonatal seizures and human inborn pattern of quadrupedal locomotion. Moreover, we have decided to realize simulators able to replicate the symptomatic movements characteristic of the diseases under consideration. The reasons is, essentially, the opportunity to have, at any time, a 'subject' on which to test the continuously evolving detection algorithms. Finally, we have developed a smartphone App, called 'Smartphone based contactless epilepsy detector' (SmartCED), able to detect neonatal clonic seizures and warn the user about the occurrence in real-time.
Resumo:
Some of the factors affecting colonisation of a colonisation sampler, the Standard Aufwuchs Unit (S. Auf. U.) were investigated, namely immersion period, whether anchored on the bottom or suspended, and the influence of riffles. It was concluded that a four-week immersion period was best. S. Auf. U. anchored on the bottom collected both more taxa and individuals than suspended ones. Fewer taxa but more individuals colonised S. Auf. U. in the potamon zone compared to the rhithron zone with a consequent reduction in the values of pollution indexes and diversity. It was concluded that a completely different scoring system was necessary for lowland rivers. Macroinvertebrates colonising S. Auf. U. in simulated streams, lowland rivers and the R. Churnet reflected water quality. A variety of pollution and diversity indexes were applied to results from lowland river sites. Instead of these, it was recommended that an abbreviated species - relative abundance list be used to summarise biological data for use in lowland river surveillance. An intensive study of gastropod populations was made in simulated streams. Lynnaea peregra increased in abundance whereas Potamopyrgas jenkinsi decreased with increasing sewage effluent concentration. No clear-cut differences in reproduction were observed. The presence/absence of eight gastropod taxa was compared with concentrations of various pollutants in lowland rivers. On the basis of all field work it appeared that ammonia, nitrite, copper and zinc were the toxicants most likely to be detrimental to gastropods and that P. jenkinsi and Theodoxus fluviatilis were the least tolerant taxa. 96h acute toxicity tests of P. jenkinsi using ammonia and copper were carried out in a flow-through system after a variety of static range finding tests. P. jenkinsi was intolerant to both toxicants compared to reports on other taxa and the results suggested that these toxicants would affect distribution of this species in the field.
Resumo:
Motivated by the increasing demand and challenges of video streaming in this thesis, we investigate methods by which the quality of the video can be improved. We utilise overlay networks that have been created by implemented relay nodes to produce path diversity, and show through analytical and simulation models for which environments path diversity can improve the packet loss probability. We take the simulation and analytical models further by implementing a real overlay network on top of Planetlab, and show that when the network conditions remain constant the video quality received by the client can be improved. In addition, we show that in the environments where path diversity improves the video quality forward error correction can be used to further enhance the quality. We then investigate the effect of IEEE 802.11e Wireless LAN standard with quality of service enabled on the video quality received by a wireless client. We find that assigning all the video to a single class outperforms a cross class assignment scheme proposed by other researchers. The issue of virtual contention at the access point is also examined. We increase the intelligence of our relay nodes and enable them to cache video, in order to maximise the usefulness of these caches. For this purpose, we introduce a measure, called the PSNR profit, and present an optimal caching method for achieving the maximum PSNR profit at the relay nodes where partitioned video contents are stored and provide an enhanced quality for the client. We also show that the optimised cache the degradation in the video quality received by the client becomes more graceful than the non-optimised system when the network experiences packet loss or is congested.