1000 resultados para Vegetation Division


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The management of urban environments is an increasingly important issue on an international scale as humans emigrate from rural areas to cities. Designing cities that can sustain mass human expansion while maintaining biodiversity is becoming an increasingly complex challenge for land managers. This is largely due to the lack of knowledge on how urbanization impacts upon biodiversity. Our previous research has highlighted the importance of urban remnant vegetation for avian diversity, but also suggested that landscape scale influences may have considerable impacts on the ability for a remnant to sustain species. We have since conducted a study examining avian diversity in 38 urban remnants ranging in size from 5ha to 107ha. These sites vary in relation to the quality of vegetation in the patch and their level of isolation from other remnant patches. This talk discusses the relative influences of remnant patch size, vegetation quality and isolation on avian diversity in urban remnant vegetation. We discuss how the findings of this research could be applied to managing avian diversity in the urban landscape.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The soil-borne plant pathogen Phytophthora cinnamomi occurs in most Australian states. It is pathogenic to many Australian species, particularly the Proteaceae, Fabaceae, Dillineaceae and Epacridaceae. In Western Australia, c. 2000 of the 9000 endemic plant species are directly affected by the disease. The epidemic of plant deaths caused by P. cinnamomi is recognised as one of 11 Key Threatening Processes to the Australian Environment, and is now also acknowledged as a potential threat fauna in a range of communities. The implications of landscape modification due to the effects of P. cinnamomi dieback prompted our research, designed to measure the distribution and abundance of small mammals in disease-affected ecosystems. This study was in the Jarrah (Eucalyptus marginata) forests in the Darling Range, Western Australia and measured the distribution and abundance of one small mammal species, the Mardo (Antechinus flavipes) by Elliott trapping in forests with (1) high, (2) mixed and (3) no evidence of Phytophthora dieback. Trap success was highest in sites with no effect of Phytophthora (7.3 animals per 100 trap nights), whereas the lowest trap success was recorded at the high impact sites (0.67 animals per 100 trap night). There was a significant difference in trap success of Mardos in Elliott trapping over 1800 trap nights (x2= 23.19, d.f = 5, p < 0.001). An examination of the distribution of individuals and sexes suggests that Phytophthora-affected sites act as sinks for Mardos, while source areas are healthy, unaffected Jarrah forest.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Powerline corridor management in Australia has traditionally focused on the complete removal of vegetation using short rotation times due to the perceived fire hazard associated with corridor vegetation. This study assessed vegetation recovery in a powerline corridor, following management, at three sites spanning corridor and forest habitat. Forest and corridor vegetation communities differed significantly between sites and over time. As vegetation recovered, the corridor community became a mix of plants common in the surrounding forest and open areas, changing within the 3-year study from a grass–fern to shrub–sedge community encroached by midstorey species. The current short rotations between management events unnecessarily maintain the corridor in a cycle of degradation, remove resources for native species and may allow introduced grasses and saplings to proliferate in the corridor. Maintaining a shrub layer would help avoid loss of species richness, encourage native species and limit colonisation opportunities of introduced species. Spot spraying emergent saplings and problem plants and mosaic slashing, would keep fire risk low and maintain biodiversity without increasing biomass to dangerous levels.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Powerline corridors through forested ecosystems have been criticised due their potential to fragment the landscape and facilitate the intrusion of undesirable species into natural areas. This study investigates the effects of vegetation management (slashing), on: (1) timing of small mammal recolonisation; (2) vegetation characteristics that drive small mammal responses; and (3) the point where corridor resources are sufficient to provide functional habitat for native species. Small mammal trapping was undertaken within Bunyip State Park, Australia, across three sites, once a month from January 2001 to May 2002 and every 2 months thereafter until January 2004. Changes in vegetation around each trap station were assessed annually in the forest and bi-annually in the corridor. Principal components analysis on the vegetation structural complexity values produced factors for use in species abundance models. Native small mammal species recolonised the corridor 1.5–3.5 years after management and the corridor supported a breeding population of small mammals around 2.5 years post-management. Males however, generally recolonised the corridor first, resulting in a sex-biased population in these areas. Species corridor habitat models for five native and one introduced species suggested cover and shelter were more important in determining corridor use than plant species per se. Powerline corridors have the potential to create a mixture of different successional stages, enhancing habitat availability for many species. However, the intensity of current management needs to be reduced and an integrated approach to management needs to be undertaken if powerline corridors are to continuously provide habitat for native small mammal species.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

While urban areas are increasingly recognized as having potential value for biodiversity conservation, the relationship between biodiversity and the structure and configuration of the urban landscape is poorly understood. In this study we surveyed birds in 39 remnant patches of native vegetation of various sizes (range 1–107 ha) embedded in the suburban matrix in Melbourne, Australia. The total richness of species within remnants was strongly associated with the size of remnants. Remnant-reliant species displayed a much stronger response to remnant area than matrix-tolerant species indicating the importance of large remnants in maintaining representative bird assemblages. Large remnants are important for other ecological groups of species including migratory species, ground foraging birds and canopy foraging birds. Other landscape (e.g. amount of riparian vegetation) and structural components (e.g. shrub cover) of remnants have a lesser role in determining the richness of individual remnants. This research provides conservation managers and planners with a hierarchical process to reserve design and management in order to conserve the highest richness of native species within urban areas. First of all, conservation efforts should preferentially focus on the retention of larger remnants of native vegetation. Second, where possible, riparian vegetation should be included within reserves or, where it is already present, should be carefully managed to ensure its integrity. Third, efforts should be focused at maintaining appropriate habitat and vegetation structure and complexity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Studies were conducted on streams flowing through agricultural floodplains in south-eastern Australia to quantify whether reductions in riparian canopy cover were associated with alterations to the input and benthic standing stocks of coarse allochthonous detritus. Comparisons were made among three farmland reaches and three reaches within reserves with intact cover of remnant overstorey trees. Detritus inputs to these reaches were measured monthly over 2 years using litter traps. Direct inputs to streams within the reserves were relatively high (550–617 g ash free dry weight (AFDW) m–2 year–1), but were lower at farmland reaches with the lowest canopy covers (83–117 gAFDW m–2 year–1). Only a minor fraction of the total allochthonous input (<10%) entered any of the study reaches laterally. The mean amounts of benthic detritus were lowest in the most open farmland reaches. Standing stocks of benthic detritus were found to be highly patchy across a large number of agricultural streams, but were consistently very low where the streamside canopy cover was below ~35%. Canopy cover should be restored along cleared agricultural streams because allochthonous detritus is a major source of food and habitat for aquatic ecosystems. Given the absence of pristine lowland streams in south-eastern Australia, those reaches with the most intact remnant overstorey canopies should be used to guide restoration.