719 resultados para Vegetable fibres
Resumo:
Previous research suggests that the use of modelling and non-food rewards may be effective at increasing tasting, and consequential liking and acceptance, of a previously disliked food. Although successful school-based interventions have been developed, there is a lack of research into home-based interventions using these methods. This study aimed to develop and investigate the efficacy of a parent led home-based intervention for increasing children's acceptance of a disliked vegetable. A total of 115 children aged 2-4 years were allocated to one of four intervention groups or to a no-treatment control. The four intervention conditions were: repeated exposure; modelling and repeated exposure; rewards and repeated exposure; or modelling, rewards and repeated exposure. Children in all of the intervention conditions were exposed by a parent to daily offerings of a disliked vegetable for 14 days. Liking and consumption of the vegetable were measured pre and post-intervention. Significant increases in post-intervention consumption were seen in the modelling, rewards and repeated exposure condition and the rewards and repeated exposure condition, compared to the control group. Significant post-intervention differences in liking were also found between the experimental groups. Liking was highest (>60%) in the modelling, rewards and repeated exposure group and the rewards and repeated exposure group, intermediate (>26%) in the modelling and repeated exposure and repeated exposure groups, and lowest in the control group (10%). Parent led interventions based around modelling and offering incentives may present cost efficient ways to increase children's vegetable consumption.
Resumo:
The development of new all-optical technologies for data processing and signal manipulation is a field of growing importance with a strong potential for numerous applications in diverse areas of modern science. Nonlinear phenomena occurring in optical fibres have many attractive features and great, but not yet fully explored, potential in signal processing. Here, we review recent progress on the use of fibre nonlinearities for the generation and shaping of optical pulses and on the applications of advanced pulse shapes in all-optical signal processing. Amongst other topics, we will discuss ultrahigh repetition rate pulse sources, the generation of parabolic shaped pulses in active and passive fibres, the generation of pulses with triangular temporal profiles, and coherent supercontinuum sources. The signal processing applications will span optical regeneration, linear distortion compensation, optical decision at the receiver in optical communication systems, spectral and temporal signal doubling, and frequency conversion. © Copyright 2012 Sonia Boscolo and Christophe Finot.
Resumo:
Strain and thermal sensitivities of germanate and tellurite glass fibres were measured using a fibre Fabry-Perot (FFP) interferometer and fibre Bragg gratings (FBG). The strain phase sensitivity for germanate and tellurite fibre were 5900×103 rad/m and 5600×103 rad/m respectively at a central wavelength of 1540nm using FFP interferometer, which is consistent with the value of 1.22pm/µepsilon obtained for a germanate fibre FBG. The Young's modulus for germanate and tellurite fibre were also measured to be 58GPa and 37GPa. The thermal responses of germanate fibre were examined as 24.71 and 16.80 pm/°C at 1540nm and 1033nm wavelength using the FBG.
Resumo:
We present an implementation of high-sensitivity optical chemsensors based on FBGs UV-inscribed in D-shape and multimode fibres and sensitized by HF-etching treatment, demonstrating a capability of detecting chemical concentration changes as small as < 0.5%.
Resumo:
We report on recent progress in polymer optical fibre grating sensors, covering developments in our understanding of the fundamental behaviour of the devices, improvements to the usability of the technology and the opening up of new applications. © 2014 OSA.
Resumo:
The innovation of optical frequency combs (OFCs) generated in passive mode-locked lasers has provided astronomy with unprecedented accuracy for wavelength calibration in high-resolution spectroscopy in research areas such as the discovery of exoplanets or the measurement of fundamental constants. The unique properties of OCFs, namely a highly dense spectrum of uniformly spaced emission lines of nearly equal intensity over the nominal wavelength range, is not only beneficial for high-resolution spectroscopy. Also in the low- to medium-resolution domain, the OFCs hold the promise to revolutionise the calibration techniques. Here, we present a novel method for generation of OFCs. As opposed to the mode-locked laser-based approach that can be complex, costly, and difficult to stabilise, we propose an all optical fibre-based system that is simple, compact, stable, and low-cost. Our system consists of three optical fibres where the first one is a conventional single-mode fibre, the second one is an erbium-doped fibre and the third one is a highly nonlinear low-dispersion fibre. The system is pumped by two equally intense continuous-wave (CW) lasers. To be able to control the quality and the bandwidth of the OFCs, it is crucial to understand how optical solitons arise out of the initial modulated CW field in the first fibre. Here, we numerically investigate the pulse evolution in the first fibre using the technique of the solitons radiation beat analysis. Having applied this technique, we realised that formation of higherorder solitons is supported in the low-energy region, whereas, in the high-energy region, Kuznetsov-Ma solitons appear.
Resumo:
This review paper summarises the current state of research into polymer optical fibre grating sensors. The properties of polymers are explored to identify situations where polymers offer potential advantages over more conventional silica fibre sensing technology. Photosensitivity is discussed and the sensitivities of polymer fibre gratings to strain, temperature and water are described. Finally, applications are reported which utilise the unique properties of polymer fibres.
Resumo:
Recent developments in nonlinear optics have brought to the fore of intensive research an interesting class of pulses with a parabolic intensity profile and a linear instantaneous frequency shift or chirp. Parabolic pulses propagate in optical fibres with normal group-velocity dispersion in a self-similar manner, holding certain relations (scaling) between pulse power, duration and chirp parameter, and can tolerate strong nonlinearity without distortion or wave breaking. These solutions, which have been dubbed similaritons, were demonstrated theoretically and experimentally in fiber amplifiers in 2000. Similaritons in fiber amplifiers are, along with solitons in passive fibres, the most well-known classes of nonlinear attractors for pulse propagation in optical fibre, so they take on major fundamental importance. The unique properties of parabolic similaritons have stimulated numerous applications in nonlinear optics, ranging from ultrashort high-power pulse generation to highly coherent continuum sources and to optical nonlinear processing of telecommunication signals.
Resumo:
Nous étudions numériquement le phénomène de compression spectrale se déroulant dans une fibre optique à dispersion normale. Les conditions conduisant à une impulsion en quasi-limite de Fourier sont déterminées et nous montrons que loin de dégrader les performances, la présence de dispersion normale permet une amélioration significative des résultats.
Resumo:
Recent developments in nonlinear optics have brought to the fore of intensive research an interesting class of pulses with a parabolic intensity profile and a linear instantaneous frequency shift or chirp. Parabolic pulses propagate in optical fibres with normal group-velocity dispersion in a self-similar manner, holding certain relations (scaling) between pulse power, duration and chirp parameter, and can tolerate strong nonlinearity without distortion or wave breaking. These solutions, which have been dubbed similaritons, were demonstrated theoretically and experimentally in fibre amplifiers in 2000. Similaritons in fibre amplifiers are, along with solitons in passive fibres, the most well-known classes of nonlinear attractors for pulse propagation in optical fibre, so they take on major fundamental importance. The unique properties of parabolic similaritons have stimulated numerous applications in nonlinear optics, ranging from ultrashort high-power pulse generation to highly coherent continuum sources and to optical nonlinear processing of telecommunication signals. In this work, we review the physics underlying the generation of parabolic similaritons as well as recent results obtained in a wide range of experimental configurations.
Resumo:
Photonic crystal fibres (PCF) and more commonly microstructure fibres, remain interesting and novel fibre types and when suitably designed can prove to be "ideal" for sensing applications, as the different geometrical arrangement of the air holes alters their optical wave-guiding properties, whilst also providing tailored dispersion characteristics. This impacts the performance of grating structures, which offer wavelength encoded sensing information. We undertake a study on different air hole geometries and proceed with characterization of fibre Bragg and long period gratings, FBG and LPG, respectively that have been inscribed (using either a femtosecond or ultraviolet laser system) within different designs of microstructured fibre that are of interest for sensing applications. © 2012 SPIE.
Resumo:
A semi-batch pyrolysis process was used to recover samples carbon fibre and glass fibre from their respective wastes. The mechanical properties of the recovered fibres were tested and compared to those of virgin fibres, showing good retention of the fibre properties. The recovered fibres were then used to prepare new LDPE composite materials with commercial and laboratory-synthesized compatibilizers. Mild oxidation of the post-pyrolysis recovered fibres and the use of different compatibilizers gave significant improvements in the mechanical properties of the LDPE composites; however some of the manufactured composites made from recovered fibres had properties similar to those made from virgin fibres.
Resumo:
How children rate vegetables may be influenced by the preparation method. The primary objective of this study was for first grade students to be involved in a cooking demonstration and to taste and rate vegetables raw and cooked. First grade children of two classes (N= 52: 18 boys and 34 girls (approximately half Hispanic) that had assented and had signed parental consent participated in the study. The degree of liking a particular vegetable was recorded by the students using a hedonic scale of five commonly eaten vegetables tasted first raw (pre-demonstration) and then cooked (post-demonstration). A food habit questionnaire was filled out by parents to evaluate their mealtime practices and beliefs about their child’s eating habits. Paired sample t-tests revealed significant differences in preferences for vegetables in their raw and cooked states. Several mealtime characteristics were significantly associated with children’s vegetable preferences. Parents who reported being satisfied with how often the family eats evening meals together were more likely to report that their child eats adequate vegetables for their health (p=0.026). Parents who stated that they were satisfied with their child’s eating habits were more likely to report that their child was trying new foods (p<.001). Cooking demonstrations by nutrition professionals may be an important strategy that can be used by parents and teachers to promote vegetable intake. It is important that nutrition professionals provide guidance to encourage consumption of vegetables for parents so that they can model the behavior of healthy food consumption to their children.