985 resultados para Varying Magnetic-fields
Resumo:
In this work, we investigated the magnetic properties of a monocrystalline Fe thin film and of Fe(80 Å)/Cr(t)/Fe(80 Å) tri-layers, with the nonmagnetic metallic Cr spacer layer thickness varying between 9 Å < t < 40 Å. The samples were deposited by the DC Sputtering on Magnesium Oxide (MgO) substrates, with (100) crystal orientation. For this investigation, experimental magneto-optical Kerr effect (MOKE) magnetometry and ferromagnetic resonance (FMR) techniques were employeed. In this case, these techniques allowed us to study the static and dynamical magnetization properties of our tri-layers. The experimental results were interpreted based on the phenomenological model that takes into account the relevant energy terms to the magnetic free energy to describe the system behavior. In the case of the monocrystalline Fe film, we performed an analytical discussion on the magnetization curves and developed a numerical simulation based on the Stoner-Wohlfarth model, that enables the numerical adjustment of the experimental magnetization curves and obtainment of the anisotropy field values. On the other hand, for the tri-layers, we analyzed the existence of bilinear and biquadratic couplings between the magnetizations of adjacent ferromagnetic layers from measurements of magnetization curves. With the FMR fields and line width angular dependencies, information on the anisotropy in three layers was obtained and the effects of different magnetic relaxation mechanisms were evidenced. It was also possible to observe the dependence of the epitaxy of the multilayers with growth and sputtering parameters. Additionally it was developed the technique of AC magnetic susceptibility in order to obtain further information during the investigation of magnetic thin films
Resumo:
Recent studies have demonstrated that sheath dynamics in plasma immersion ion implantation (PIII) is significantly affected by an external magnetic field, especially in the case when the magnetic field is parallel to the workpiece surface or intersects it at small angles. In this work we report the results from two-dimensional, particle-in-cell (PIC) computer simulations of magnetic field enhanced plasma immersion implantation system at different bias voltages. The simulations begin with initial low-density nitrogen plasma, which extends with uniform density through a grounded cylindrical chamber. Negative bias voltage is applied to a cylindrical target located on the axis of the vacuum chamber. An axial magnetic field is created by a solenoid installed inside the target holder. A set of simulations at a fixed magnetic field of 0.0025 T at the target surface is performed. Secondary electron emission from the target subjected to ion bombardment is also included. It is found that the plasma density around the cylindrical target increases because of intense background gas ionization by the electrons drifting in the crossed E x B fields. Suppression of the sheath expansion and increase of the implantation current density in front of the high-density plasma region are observed. The effect of target bias on the sheath dynamics and implantation current of the magnetic field enhanced PIII is discussed. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
The behavior of plasma and sheath characteristics under the action of an applied magnetic field is important in many applications including plasma probes and material processing. Plasma immersion ion implantation (PIII) has been developed as a fast and efficient surface modification technique of complex shaped three-dimensional objects. The PIII process relies on the acceleration of ions across a high-voltage plasma sheath that develops around the target. Recent studies have shown that the sheath dynamics is significantly affected by an external magnetic field. In this work we describe a two-dimensional computer simulation of magnetic field enhanced plasma immersion implantation system. Negative bias voltage is applied to a cylindrical target located on the axis of a grounded cylindrical vacuum chamber filled with uniform nitrogen plasma. An axial magnetic field is created by a solenoid installed inside the cylindrical target. The computer code employs the Monte Carlo method for collision of electrons and neutrals in the plasma and a particle-in-cell (PIC) algorithm for simulating the movement of charged particles in the electromagnetic field. Secondary electron emission from the target subjected to ion bombardment is also included. It is found that a high-density plasma region is formed around the cylindrical target due to the intense background gas ionization by the magnetized electrons drifting in the crossed ExB fields. An increase of implantation current density in front of high density plasma region is observed. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
In this work we describe a two-dimensional computer simulation of magnetic field enhanced plasma immersion implantation system. Negative bias voltage of 10.0 kV is applied to a cylindrical target located on the axis of a grounded vacuum chamber filled with uniform nitrogen plasma. A pair of external coils creates a static magnetic field with main vector component along the axial direction. Thus, a system of crossed ExB field is generated inside the vessel forcing plasma electrons to rotate in azimuthal direction. In addition, the axial variation of the magnetic field intensity produces magnetic mirror effect that enables axial particle confinement. It is found that high-density plasma regions are formed around the target due to intense background gas ionization by the trapped electrons. Effect of the magnetic field on the sheath dynamics and the implantation current density of the PIII system is investigated. By changing the magnetic field axial profile (varying coils separation) an enhancement of about 30% of the retained dose can be achieved. The results of the simulation show that the magnetic mirror configuration brings additional benefits to the PIII process, permitting more precise control of the implanted dose.
Resumo:
Plasma immersion ion implantation (PIII) with low external magnetic field has been investigated both numerically and experimentally. The static magnetic field considered is essentially nonuniform and is generated by two magnetic coils installed outside the vacuum chamber. Experiments have been conducted to investigate the effect of two of the most important PIII parameters: target voltage and gas pressure. In that context, it was found that the current density increased when the external parameters were varied. Later, the PIII process was analyzed numerically using the 2.5-D computer code KARAT. The numerical results show that the system of crossed E x B fields enhances the PIII process. The simulation showed an increase of the plasma density around the target under the operating and design conditions considered. Consequently, an increase of the ion current density on the target was observed. All these results are explained through the mechanism of gas ionization by collisions with electrons drifting in crossed E x B fields.
Resumo:
This paper presents numerical simulations of incompressible fluid flows in the presence of a magnetic field at low magnetic Reynolds number. The equations governing the flow are the Navier-Stokes equations of fluid motion coupled with Maxwell's equations of electromagnetics. The study of fluid flows under the influence of a magnetic field and with no free electric charges or electric fields is known as magnetohydrodynamics. The magnetohydrodynamics approximation is considered for the formulation of the non-dimensional problem and for the characterization of similarity parameters. A finite-difference technique is used to discretize the equations. In particular, an extension of the generalized Peaceman and Rachford alternating-direction implicit (ADI) scheme for simulating two-dimensional fluid flows is presented. The discretized conservation equations are solved in stream function-vorticity formulation. We compare the ADI and generalized ADI schemes, and show that the latter is more efficient in simulating low Reynolds number and magnetic Reynolds number problems. Numerical results demonstrating the applicability of this technique are also presented. The simulation of incompressible magneto hydrodynamic fluid flows is illustrated by numerical solution for two-dimensional cases. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Magnetic properties of two spinel oxides solid solutions, Cul+xMn2-xO4 and Ni1+xMn2-xO4 are reported. These series are characterized by two magnetic transitions: the upper one, of ferrimagnetic type, occurs at about 85 K (for copper-based) and at 105-110 K (for nickel-based spinels), independently of the x-content: the lower transition may be related to a Neel-type collinear ordering and takes place at 30 and 45 K, respectively. Application of moderate fields (H > 250 Oe) make both transitions to merge into one broad maximum in the magnetization, which takes place at lower temperature when applying larger fields. Magnetization cycles with temperature (ZFC/FC) or field (loops) allowed us to well characterize the ordered state. The effective moment follows the expected behavior when manganese ions are being substituted by ions of lower magnetic moment (Ni(2+)andCU(2+)). (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Recent studies have demonstrated that the sheath dynamics in plasma immersion ion implantation (PIII) is significantly affected by an external magnetic field. In this paper, a two-dimensional computer simulation of a magnetic-field-enhanced PHI system is described. Negative bias voltage is applied to a cylindrical target located on the axis of a grounded vacuum chamber filled with uniform molecular nitrogen plasma. A static magnetic field is created by a small coil installed inside the target holder. The vacuum chamber is filled with background nitrogen gas to form a plasma in which collisions of electrons and neutrals are simulated by the Monte Carlo algorithm. It is found that a high-density plasma is formed around the target due to the intense background gas ionization by the magnetized electrons drifting in the crossed E x B fields. The effect of the magnetic field intensity, the target bias, and the gas pressure on the sheath dynamics and implantation current of the PHI system is investigated.
Resumo:
Systematic studies in manganites of spinel structure have been undertaken. We report on the magnetic properties of two particular cases, in which one of the transition metals, Mg2+ is non-magnetic (NiMgxMn2-xO4) or presents a stable oxidation state, Cu2+ (CoxCuyMnzO4, x + y + z = 3). The magnetic behaviour is described with respect to varying contents of cobalt, copper or manganese. A ferrimagnetic transition is observed at 110-120 K, which depends on the cobalt content. Presence of copper increases the coercive field by a factor of ten with respect to the parent compound NiMn2O4. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Propanil and its major degradation product, 3,4-dichloroaniline (DCA), were monitored in surface water and soil samples from two rice fields of the Ebre Delta area (Tarragona, Spain) following agricultural application. On-line solid-phase extraction (SPE) (water) and Soxhlet extraction (soil) followed by liquid chromatography/diode array detection (LC/DAD) were used for the trace determination of both compounds. Unequivocal confirmation/identification was conducted by using liquid chromatography/atmospheric pressure chemical ionization-mass spectrometry, LC/APCI/MS (using negative and positive ionization modes). Concentrations of the herbicide propanil in water samples varied from 1.9 to 55.9 mu g/L. Propanil degraded very rapidly to DCA, and high concentrations of this product were found, varying from 16.5 to 470 mu g/L in water and 119 +/- 22 mu g/kg in soil samples. No detectable DCA (<0.001%) was found in the applied pesticide formulation, indicating that DCA formation took place after propanil application. These field results compared favorably with laboratory experiments showing that humic interactions had a strong influence on the pesticide degradation. The half-lifes under real conditions for propanil and DCA, calculated using a first-order decay, were 1.2 and 1.6 days, respectively.
Resumo:
The solar events that occurred at the end of October 2003 gave rise to very strong geomagnetic disturbances that peaked twice with Dst values reaching -345 nT around 0000 UT on 30 October and -400 nT around 2300 UT, on the same day. Disturbances in several ionospheric parameters were observed over Brazil. This work will focus on the ionospheric response to the initial westward prompt penetration electric field and on the strong intensification of the equatorial ionization anomaly that occurred because of the electric field polarity reversal that followed in the early morning hours of 29 October. The F layer peak height over the equator first decreased under the strong prompt penetration westward electric field, which was followed by significant height increase under eastward electric field. We have used Sheffield University Plasmasphere Ionosphere Model (SUPIM) with an intensified westward disturbed electric field in the presunrise hours, presumably due to prompt penetration from the magnetosphere, in order to study the effect of such a field in the ionosphere. The simulation results showed that prompt penetration of magnetospheric electric fields of westward polarity to the nightside equatorial region seems to be the most probable cause of the initial F layer height decreases. The intensification of the equatorial ionization anomaly and the unusual enhancement on F layer peak density, which was not modeled by the SUPIM, are explained as caused by the strong eastward electric field that followed the initial phase in combination with a highly variable disturbed meridional/transequatorial wind system as inferred from the F2 layer peak height variations. The highly dynamic wind pattern, with a short-term response (2-4 hours), is compatible with the predictions of some previous theoretical model calculations reported in the literature.
Resumo:
The evolution of the energy states of the phosphorous donor in silicon with magnetic field has been the subject of previous experimental and theoretical studies to fields of 10 T. We now present experimental optical absorption data to 18 T in combination with theoretical data to the same field. We observe features that are not revealed in the earlier work, including additional interactions and anti-crossings between the different final states. For example, according to the theory, for the "1s -> 2p (+)" transition, there are anti-crossings at about 5, 10, 14, 16, and 18 T. In the experiments, we resolve at least the 5, 10, and 14 T anti-crossings, and our data at 16 and 18 T are consistent with the calculations.
Resumo:
The effect of magnetic field enhanced plasma immersion ion implantation (PIII) in silicon substrate has been investigated at low and high pulsed bias voltages. The magnetic field in magnetic bottle configuration was generated by two magnetic coils installed outside the vacuum chamber. The presence of both, electric and magnetic field in PIII creates a system of crossed E x B fields, promoting plasma rotation around the target. The magnetized electrons drifting in crossed E x B fields provide electron-neutral collision. Consequently, the efficient background gas ionization augments the plasma density around the target where a magnetic confinement is achieved. As a result, the ion current density increases, promoting changes in the samples surface properties, especially in the surface roughness and wettability and also an increase of implantation dose and depth. (C) 2012 Elsevier B. V. All rights reserved.
Resumo:
We show that the formation of condensates in the presence of a constant magnetic field in 2+1 dimensions is extremely unstable. It disappears as soon as a heat bath is introduced with or without a chemical potential. The value of the condensate as well as other observables are shown to become nonanalytic at finite temperature.
Resumo:
We investigate higher grading integrable generalizations of the affine Toda systems, where the flat connections defining the models take values in eigensubspaces of an integral gradation of an affine Kac-Moody algebra, with grades varying from l to -l (l > 1). The corresponding target space possesses nontrivial vacua and soliton configurations, which can be interpreted as particles of the theory, on the same footing as those associated to fundamental fields. The models can also be formulated by a hamiltonian reduction procedure from the so-called two-loop WZNW models. We construct the general solution and show the classes corresponding to the solitons. Some of the particles and solitons become massive when the conformal symmetry is spontaneously broken by a mechanism with an intriguing topological character and leading to a very simple mass formula. The massive fields associated to nonzero grade generators obey field equations of the Dirac type and may be regarded as matter fields. A special class of models is remarkable. These theories possess a U(1 ) Noether current, which, after a special gauge fixing of the conformal symmetry, is proportional to a topological current. This leads to the confinement of the matter field inside the solitons, which can be regarded as a one-dimensional bag model for QCD. These models are also relevant to the study of electron self-localization in (quasi-)one-dimensional electron-phonon systems.