952 resultados para VACCINES
Resumo:
Infections with intestinal helminths severely impact on human and veterinary health, particularly through the damage that these large parasites inflict when migrating through host tissues. Host immunity often targets the motility of tissue-migrating helminth larvae, which ideally should be mimicked by anti-helminth vaccines. However, the mechanisms of larval trapping are still poorly defined. We have recently reported an important role for Abs in the rapid trapping of tissue-migrating larvae of the murine parasite Heligmosomoides polygyrus bakeri. Trapping was mediated by macrophages (MΦ) and involved complement, activating FcRs, and Arginase-1 (Arg1) activity. However, the receptors and Ab isotypes responsible for MΦ adherence and Arg1 induction remained unclear. Using an in vitro coculture assay of H. polygyrus bakeri larvae and bone marrow-derived MΦ, we now identify CD11b as the major complement receptor mediating MΦ adherence to the larval surface. However, larval immobilization was largely independent of CD11b and instead required the activating IgG receptor FcγRI (CD64) both in vitro and during challenge H. polygyrus bakeri infection in vivo. FcγRI signaling also contributed to the upregulation of MΦ Arg1 expression in vitro and in vivo. Finally, IgG2a/c was the major IgG subtype from early immune serum bound by FcγRI on the MΦ surface, and purified IgG2c could trigger larval immobilization and Arg1 expression in MΦ in vitro. Our findings reveal a novel role for IgG2a/c-FcγRI-driven MΦ activation in the efficient trapping of tissue-migrating helminth larvae and thus provide important mechanistic insights vital for anti-helminth vaccine development.
Rapid identification of malaria vaccine candidates based on alpha-helical coiled coil protein motif.
Resumo:
To identify malaria antigens for vaccine development, we selected alpha-helical coiled coil domains of proteins predicted to be present in the parasite erythrocytic stage. The corresponding synthetic peptides are expected to mimic structurally "native" epitopes. Indeed the 95 chemically synthesized peptides were all specifically recognized by human immune sera, though at various prevalence. Peptide specific antibodies were obtained both by affinity-purification from malaria immune sera and by immunization of mice. These antibodies did not show significant cross reactions, i.e., they were specific for the original peptide, reacted with native parasite proteins in infected erythrocytes and several were active in inhibiting in vitro parasite growth. Circular dichroism studies indicated that the selected peptides assumed partial or high alpha-helical content. Thus, we demonstrate that the bioinformatics/chemical synthesis approach described here can lead to the rapid identification of molecules which target biologically active antibodies, thus identifying suitable vaccine candidates. This strategy can be, in principle, extended to vaccine discovery in a wide range of other pathogens.
Resumo:
Although increasing evidence suggests that CTL are important to fight the development of some cancers, the frequency of detectable tumor-specific T cells is low in cancer patients, and these cells have generally poor functional capacities, compared with virus-specific CD8(+) T cells. The generation with a vaccine of potent CTL responses against tumor Ags therefore remains a major challenge. In the present study, ex vivo analyses of Melan-A-specific CD8(+) T cells following vaccination with Melan-A peptide and CpG oligodeoxynucleotides revealed the successful induction in the circulation of effective melanoma-specific T cells, i.e., with phenotypic and functional characteristics similar to those of CTL specific for immunodominant viral Ags. Nonetheless, the eventual impact on tumor development in vaccinated melanoma donors remained limited. The comprehensive study of vaccinated patient metastasis shows that vaccine-driven tumor-infiltrating lymphocytes, although activated, still differed in functional capacities compared with blood counterparts. This coincided with a significant increase of FoxP3(+) regulatory T cell activity within the tumor. The consistent induction of effective tumor-specific CD8(+) T cells in the circulation with a vaccine represents a major achievement; however, clinical benefit may not be achieved unless the tumor environment can be altered to enable CD8(+) T cell efficacy.
Resumo:
BACKGROUND: Tobacco dependence is the leading cause of preventable death and disabilities worldwide and nicotine is the main substance responsible for the addiction to tobacco. A vaccine against nicotine was tested in a 6-month randomized, double blind phase II smoking cessation study in 341 smokers with a subsequent 6-month follow-up period. METHODOLOGY/PRINCIPAL FINDINGS: 229 subjects were randomized to receive five intramuscular injections of the nicotine vaccine and 112 to receive placebo at monthly intervals. All subjects received individual behavioral smoking cessation counseling. The vaccine was safe, generally well tolerated and highly immunogenic, inducing a 100% antibody responder rate after the first injection. Point prevalence of abstinence at month 2 showed a statistically significant difference between subjects treated with Nicotine-Qbeta (47.2%) and placebo (35.1%) (P = 0.036), but continuous abstinence between months 2 and 6 was not significantly different. However, in subgroup analysis of the per-protocol population, the third of subjects with highest antibody levels showed higher continuous abstinence from month 2 until month 6 (56.6%) than placebo treated participants (31.3%) (OR 2.9; P = 0.004) while medium and low antibody levels did not increase abstinence rates. After 12 month, the difference in continuous abstinence rate between subjects on placebo and those with high antibody response was maintained (difference 20.2%, P = 0.012). CONCLUSIONS: Whereas Nicotine-Qbeta did not significantly increase continuous abstinence rates in the intention-to-treat population, subgroup analyses of the per-protocol population suggest that such a vaccination against nicotine can significantly increase continuous abstinence rates in smokers when sufficiently high antibody levels are achieved. Immunotherapy might open a new avenue to the treatment of nicotine addiction. TRIAL REGISTRATION: Swiss Medical Registry 2003DR2327; ClinicalTrials.gov NCT00369616.
Resumo:
We have recently shown that nasal immunization of anesthetized mice with human papillomavirus type 16 (HPV16) virus-like particles (VLPs) is highly effective at inducing both neutralizing immunoglobulin A (IgA) and IgG in genital secretions, while parenteral immunization induced only neutralizing IgG. Our data also demonstrated that both isotypes are similarly neutralizing according to an in vitro pseudotyped neutralization assay. However, it is known that various amounts of IgA and IgG are produced in genital secretions along the estrous cycle. Therefore, we have investigated how this variation influences the amount of HPV16 neutralizing antibodies induced after immunization with VLPs. We have compared parenteral and nasal protocols of vaccination with daily samplings of genital secretions of mice. Enzyme-linked immunosorbent assay analysis showed that total IgA and IgG inversely varied along the estrous cycle, with the largest amounts of IgA in proestrus-estrus and the largest amount of IgG in diestrus. This resulted in HPV16 neutralizing titers of IgG only being achieved during diestrus upon parenteral immunization. In contrast, nasal vaccination induced neutralizing titers of IgA plus IgG throughout the estrous cycle, as confirmed by in vitro pseudotyped neutralization assays. Our data suggest that mucosal immunization might be more efficient than parenteral immunization at inducing continuous protection of the female genital tract.
Resumo:
Summary The specific CD8+ T cell immune response against tumors relies on the recognition by the T cell receptor (TCR) on cytotoxic T lymphocytes (CTL) of antigenic peptides bound to the class I major histocompatibility complex (MHC) molecule. Such tumor associated antigenic peptides are the focus of tumor immunotherapy with peptide vaccines. The strategy for obtaining an improved immune response often involves the design of modified tumor associated antigenic peptides. Such modifications aim at creating higher affinity and/or degradation resistant peptides and require precise structures of the peptide-MHC class I complex. In addition, the modified peptide must be cross-recognized by CTLs specific for the parental peptide, i.e. preserve the structure of the epitope. Detailed structural information on the modified peptide in complex with MHC is necessary for such predictions. In this thesis, the main focus is the development of theoretical in silico methods for prediction of both structure and cross-reactivity of peptide-MHC class I complexes. Applications of these methods in the context of immunotherapy are also presented. First, a theoretical method for structure prediction of peptide-MHC class I complexes is developed and validated. The approach is based on a molecular dynamics protocol to sample the conformational space of the peptide in its MHC environment. The sampled conformers are evaluated using conformational free energy calculations. The method, which is evaluated for its ability to reproduce 41 X-ray crystallographic structures of different peptide-MHC class I complexes, shows an overall prediction success of 83%. Importantly, in the clinically highly relevant subset of peptide-HLAA*0201 complexes, the prediction success is 100%. Based on these structure predictions, a theoretical approach for prediction of cross-reactivity is developed and validated. This method involves the generation of quantitative structure-activity relationships using three-dimensional molecular descriptors and a genetic neural network. The generated relationships are highly predictive as proved by high cross-validated correlation coefficients (0.78-0.79). Together, the here developed theoretical methods open the door for efficient rational design of improved peptides to be used in immunotherapy. Résumé La réponse immunitaire spécifique contre des tumeurs dépend de la reconnaissance par les récepteurs des cellules T CD8+ de peptides antigéniques présentés par les complexes majeurs d'histocompatibilité (CMH) de classe I. Ces peptides sont utilisés comme cible dans l'immunothérapie par vaccins peptidiques. Afin d'augmenter la réponse immunitaire, les peptides sont modifiés de façon à améliorer l'affinité et/ou la résistance à la dégradation. Ceci nécessite de connaître la structure tridimensionnelle des complexes peptide-CMH. De plus, les peptides modifiés doivent être reconnus par des cellules T spécifiques du peptide natif. La structure de l'épitope doit donc être préservée et des structures détaillées des complexes peptide-CMH sont nécessaires. Dans cette thèse, le thème central est le développement des méthodes computationnelles de prédiction des structures des complexes peptide-CMH classe I et de la reconnaissance croisée. Des applications de ces méthodes de prédiction à l'immunothérapie sont également présentées. Premièrement, une méthode théorique de prédiction des structures des complexes peptide-CMH classe I est développée et validée. Cette méthode est basée sur un échantillonnage de l'espace conformationnel du peptide dans le contexte du récepteur CMH classe I par dynamique moléculaire. Les conformations sont évaluées par leurs énergies libres conformationnelles. La méthode est validée par sa capacité à reproduire 41 structures des complexes peptide-CMH classe I obtenues par cristallographie aux rayons X. Le succès prédictif général est de 83%. Pour le sous-groupe HLA-A*0201 de complexes de grande importance pour l'immunothérapie, ce succès est de 100%. Deuxièmement, à partir de ces structures prédites in silico, une méthode théorique de prédiction de la reconnaissance croisée est développée et validée. Celle-ci consiste à générer des relations structure-activité quantitatives en utilisant des descripteurs moléculaires tridimensionnels et un réseau de neurones couplé à un algorithme génétique. Les relations générées montrent une capacité de prédiction remarquable avec des valeurs de coefficients de corrélation de validation croisée élevées (0.78-0.79). Les méthodes théoriques développées dans le cadre de cette thèse ouvrent la voie du design de vaccins peptidiques améliorés.
Resumo:
Despite showing promise in preclinical models, anti-Staphylococcus aureus vaccines have failed in clinical trials. To date, approaches have focused on neutralizing/opsonizing antibodies; however, vaccines exclusively inducing cellular immunity have not been studied to formally test whether a cellular-only response can protect against infection. We demonstrate that nasal vaccination with targeted nanoparticles loaded with Staphylococcus aureus antigen protects against acute systemic S. aureus infection in the absence of any antigen-specific antibodies. These findings can help inform future developments in staphylococcal vaccine development and studies into the requirements for protective immunity against S. aureus.
Resumo:
BACKGROUND: Although medical and travel plans gathered from pre-travel interviews are used to decide the provision of specific pre-travel health advice and vaccinations, there has been no evaluation of the relevance of this strategy. In a prospective study, we assessed the agreement between pre-travel plans and post-travel history and the effect on advice regarding the administration of vaccines and recommendations for malaria prevention. METHODS: We included prospectively all consenting adults who had not planned an organized tour. Pre- and post-travel information included questions on destination, itineraries, departure and return dates, access to bottled water, plan of bicycle ride, stays in a rural zone, and close contact with animals. The outcomes measured included: agreement between pre- and post-travel itineraries and activities; and the effect of these differences on pre-travel health recommendations, had the traveler gone to the actual versus intended destinations for actual versus intended duration and activities. RESULTS: Three hundred and sixty-five travelers were included in the survey, where 188 (52%) were males (median age 38 years). In 81(23%) travelers, there was no difference between pre- and post-travel history. Disagreement between pre- and post-travel history were the highest for stays in rural zones or with local people (66% of travelers), close contact with animals (33%), and bicycle riding (21%). According to post-travel history, 125 (35%) travelers would have needed rabies vaccine and 9 (3%) typhoid fever vaccine. Potential overprovision of vaccine was found in <2% of travelers. A change in the malaria prescription would have been recommended in 18 (5%) travelers. CONCLUSIONS: Pre-travel history does not adequately reflect what travelers do. However, difference between recommendations for the actual versus intended travel plans was only clinically significant for the need for rabies vaccine. Particular attention during pre-travel health counseling should focus on the risk of rabies, the need to avoid close contact with animals and to seek care for post-exposure prophylaxis following an animal bite.
Resumo:
Numerous phase I and II clinical trials testing the safety and immunogenicity of various peptide vaccine formulations based on CTL-defined tumor antigens in cancer patients have been reported during the last 7 years. While specific T-cell responses can be detected in a variable fraction of immunized patients, an even smaller but significant fraction of these patients have objective tumor responses. Efficient therapeutic vaccination should aim at boosting naturally occurring antitumor T- and B-cell responses and at sustaining a large number of tumor antigen specific and fully functional effector T cells at tumor sites. Recent progress in our ability to quantitatively and qualitatively monitor tumor antigen specific CD8 T-cell responses will greatly help in making rapid progress in this field.
Resumo:
Cytomegalovirus (CMV) remains one of the most common infections after solid organ transplantation, resulting in significant morbidity, graft loss, and occasional mortality. Management of CMV varies considerably among transplant centers. A panel of experts on CMV and solid organ transplant was convened by The Infectious Diseases Section of The Transplantation Society to develop evidence and expert opinion-based consensus guidelines on CMV management including diagnostics, immunology, prevention, treatment, drug resistance, and pediatric issues.
Resumo:
OBJECTIVE: To determine in chimpanzees if candidate HIV-1 subunit protein vaccines were capable of eliciting long-lasting T-cell memory responses in the absence of viral infection, and to determine the specific characteristics of these responses. DESIGN: A longitudinal study of cell-mediated immune responses induced in three chimpanzees following immunization with subunit envelope glycoproteins of either HIV-1 or herpes simplex virus (HSV)-2. Following these pre-clinical observations, four human volunteers who had been immunized 7 years previously with the same HIV-1 vaccine candidate donated blood for assessment of immune responses. METHODS: Responses were monitored by protein and peptide based ELISpot assays, lymphocyte proliferation, and intracellular cytokine staining. Humoral responses were assessed by enzyme-linked immunosorbent assay and virus neutralization assays. RESULTS: Although antigen (Ag)-specific CD4 T-cell responses persisted for at least 5 years in chimpanzees, CD8 T-cell responses were discordant and declined within 2 years. Detailed cellular analyses revealed that strong Th1 in addition to Th2 type responses were induced by AS2/gp120 and persisted, whereas CD8 T-cell memory declined in peripheral blood. The specificity of both Th and cytotoxic T-lymphocyte responses revealed that the majority of responses were directed to conserved epitopes. The remarkable persistence of Ag-specific CD4 T-cell memory was characterized as a population of the CD45RA-CD62L-CCR7- "effector phenotype" producing the cytokines IFNgamma, IL-2 and IL-4 upon epitope-specific recognition. Importantly, results in chimpanzees were confirmed in peripheral blood of one of four human volunteers studied more than 7 years after immunization. CONCLUSION: These studies demonstrate that epitope-specific Th1 and Th2 cytokine-dependent Th responses can be induced and maintained for longer than 5 years by immunization with subunit proteins of HIV-1.
Resumo:
Needle-free procedures are very attractive ways to deliver vaccines because they diminish the risk of contamination and may reduce local reactions, pain or pain fear especially in young children with a consequence of increasing the vaccination coverage for the whole population. For this purpose, the possible development of a mucosal malaria vaccine was investigated. Intranasal immunization was performed in BALB/c mice using a well-studied Plasmodium berghei model antigen derived from the circumsporozoite protein with the modified heat-labile toxin of Escherichia coli (LTK63), which is devoid of any enzymatic activity compared to the wild type form. Here, we show that intranasal administration of the two compounds activates the T and B cell immune response locally and systemically. In addition, a total protection of mice is obtained upon a challenge with live sporozoites.
Resumo:
In chronic viral infections, CD8⁺ T cells become functionally deficient and display multiple molecular alterations. In contrast, only little is known of self- and tumor-specific CD8⁺ T cells from mice and humans. Here we determined molecular profiles of tumor-specific CD8⁺ T cells from melanoma patients. In peripheral blood from patients vaccinated with CpG and the melanoma antigen Melan-A/MART-1 peptide, we found functional effector T cell populations, with only small but nevertheless significant differences in T cells specific for persistent herpesviruses (EBV and CMV). In contrast, Melan-A/MART-1-specific T cells isolated from metastases from patients with melanoma expressed a large variety of genes associated with T cell exhaustion. The identified exhaustion profile revealed extended molecular alterations. Our data demonstrate a remarkable coexistence of effector cells in circulation and exhausted cells in the tumor environment. Functional T cell impairment is mediated by inhibitory receptors and further molecular pathways, which represent potential targets for cancer therapy.